DS07-13711-4E

16-Bit Original Microcontroller

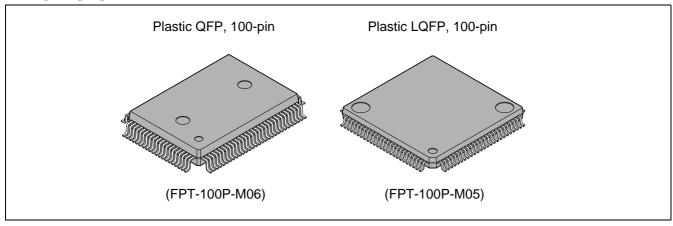
CMOS

F²MC-16LX MB90420G/425G Series

MB90423GA/423GC/F423GA/F423GC/427GA/427GC/428GA/428GC/ MB90F428GA/F428GC/V420G

DESCRIPTIONS

The FUJITSU MB90420G/425G Series is a 16-bit general purpose high-capacity microcontroller designed for vehicle meter control applications etc.


The instruction set retains the same AT architecture as the FUJITSU original F²MC-8L and F²MC-16L series, with further refinements including high-level language instructions, expanded addressing mode, enhanced (signed) multipler-divider computation and bit processing.

In addition, a 32-bit accumulator is built in to enable long word processing.

FEATURES

- 16-bit input capture (4 channels)
 Detects rising, falling, or both edges.
 16-bit capture register × 4
 Pin input edge detection latches the 16-bit free-run timer counter value, and generates an interrupt request.
- 16-bit reload timer (2 channels)
 16-bit reload timer operation (select toggle output or one-shot output)
 Event count function selection provided

PACKAGES

 Watch timer (main clock) Operates directly from oscillator clock. Compensates for oscillator deviation Read/write enabled second/minute/hour register Signal interrupt
 16-bit PPG (3 channels) Output pins (3), external trigger input pin (1) Output clock frequencies : fcp, fcp/2², fcp/2⁴, fcp/2⁶
 Delay interrupt Generates interrupt for task switching. Interruptions to CPU can be generated/deleted by software setting.
 External interrupts (8 channels) 8-channel independent operation Interrupt source setting available : "L" to "H" edge/ "H" to "L" edge/ "L" level/ "H" level.
 A/D converter 10-bit or 8-bit resolution × 8 channels (input multiplexed)
Conversion time : $6.13 \mu s$ or less (at fcp = 16 MHz) External trigger startup available (P50/INT0/ADTG) Internal timer startup available (16-bit reload timer 1)
 UART (2 channels) Full duplex double buffer type Supports asynchronous/synchronous transfer (with start/stop bits)
Internal timer can be selected as clock (16-bit reload timer 0) Asynchronous : 4808 bps, 5208 bps, 9615 bps, 10417 bps, 19230 bps, 38460 bps, 62500 bps, 500000 bps Synchronous : 500 Kbps, 1Mbps, 2Mbps (at $f_{CP} = 16$ MHz)
 CAN interface *1 Conforms to CAN specifications version 2.0 Part A and B. Automatic resend in case of error.
Automatic transfer in response to remote frame. 16 prioritized message buffers for data and messages for data and ID Multiple message support
Receiving filter has flexible configuration : All bit compare/all bit mask/two partial bit masks Supports up to 1 Mbps CAN WAKEUP function (connects RX internally to INT0)
LCD controller/driver (1 channel) Segment driver and command driver with direct LCD panel (display) drive capability
Low voltage/Program Looping detect reset *2 Automatic reset when low voltage is detected Program Looping detection function
 Stepping motor controller (4 channels) High current output for all channels × 4 Synchronized 8/10-bit PWM for all channels × 2
 Sound generator 8-bit PWM signal mixed with tone frequency from 8-bit reload counter. PWM frequencies : 62.5 kHz, 31.2 kHz, 15.6 kHz, 7.8 kHz (at fcp = 16MHz) Tone frequencies : 1/2 PWM frequency, divided by (reload frequency +1)

- Input/output ports
 Push-pull output and Schmitt trigger input
 Programmable in bit units for input/output or peripheral signals.

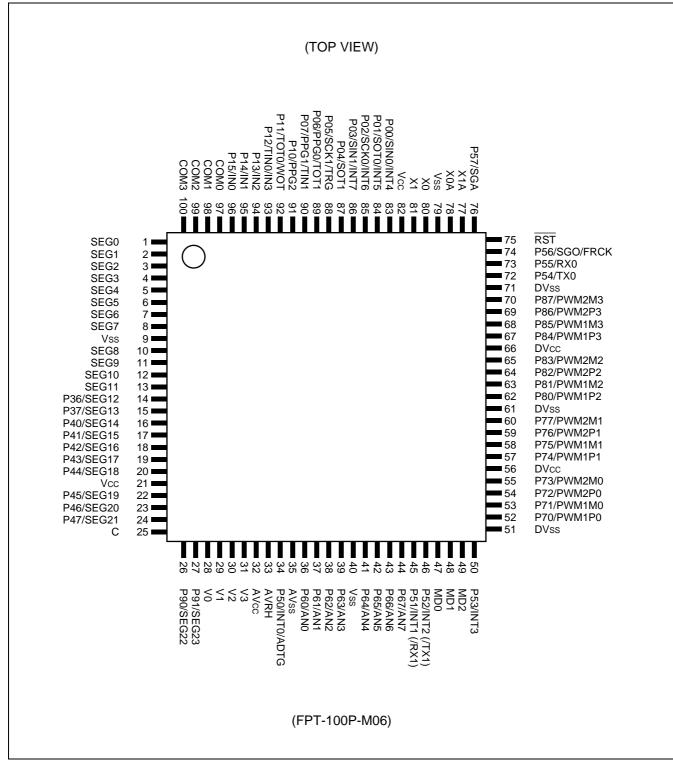
 Flash memory
 Supports automatic programming, Embeded Algorithm[™], write/erase/erase pause/erase resume instructions
 Flag indicates algorithm completion
 Minato Electronics flash writer
 Boot block configuration
 Erasable by blocks
 Block protection by external programming voltage
- *1: MB90420G series has 2 channels built-in, MB90425G series has 1 channel built-in
- *2 : Built-in to MB90420GA/425GA series only. Not built-in to MB90420GC/425GC series. Embeded Algorithm is a registered trademark of Advanced Micro Devices Inc.

■ PRODUCT LINEUP

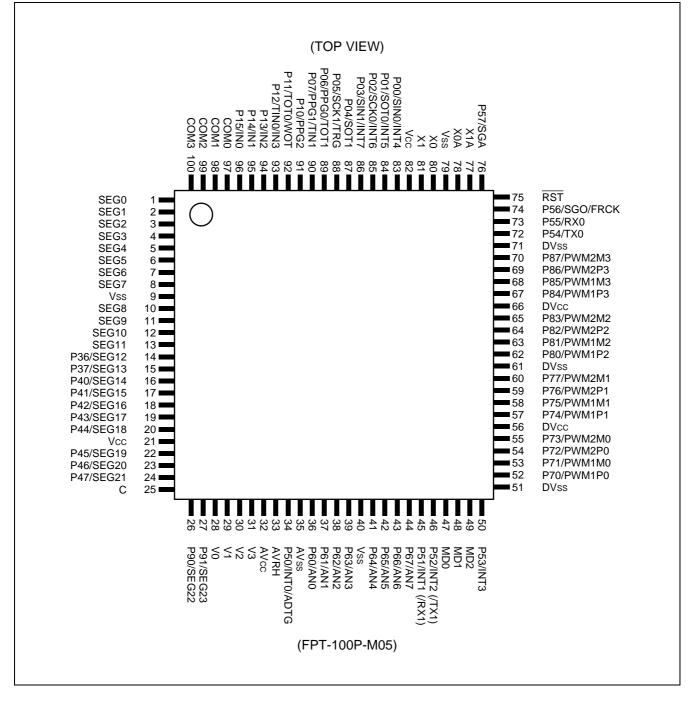
MB90420G Series

Part number Parameter	MB90F423GA	MB90F423GC	MB90423GA	MB90423GC	MB90V420G
Configuration	Flash RC	M model	Mask RC	M model	Evaluation model
CPU		F	² MC-16LX CPU		
Clock	1 system	2 systems	1 system	2 systems	2 systems
System clock	On-chip PLL clock n Minimum instruction)
ROM	Flash ROI	VI 128 KB	Mask RO	M 128 KB	External
RAM	6 ł	(B	6	6 KB	
CAN interface			2 channels		
Low voltage/ CPU operation detection reset	Yes No		Yes	No	No
Packages		PGA-256			
Emulator dedicated power supply*		No			

*: When used with emulation pod MB2145-507, use DIP switch S2 setting. For details see the MB2145-50 Hardware Manual (2.7 "Emulator Dedicated Power Supply Pin").


MB90425G Series

Part number Parameter	MB90F428GA	MB90F428GC	MB90427GA	MB90427GC	MB90428GA	MB90428GC		
Configuration	Flash RC	M model		Mask RC	M model			
CPU			F ² MC-16L	LX CPU				
Clock	1 system	2 systems	1 system	2 systems	1 system	2 systems		
System clock		On-chip PLL clock multiplier type (\times 1, \times 2, \times 3, \times 4, 1/2 when PLL stopped) Minimum instruction execution time 62.5 ns (with 4 MHz oscillator \times 4)						
ROM	Flash RO	M 128 KB	Mask RC	DM 64 KB	Mask ROM 128 KB			
RAM	61	<В	4	KB	6 KB			
CAN interface			1 chai	nnel				
Low voltage/CPU operation detection reset	Yes	No	Yes	No	Yes	No		
Packages	QFP100, LQFP100							
Emulator dedicated power supply								


Note : MB90V420G can be used as evaluation model for MB90420G/425G series.

PIN ASSIGNMENTS

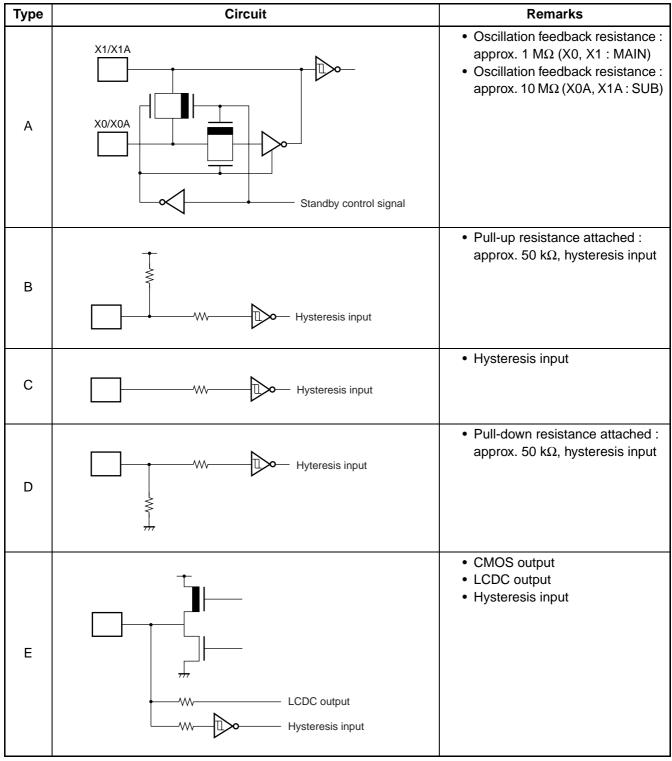
• QFP 100

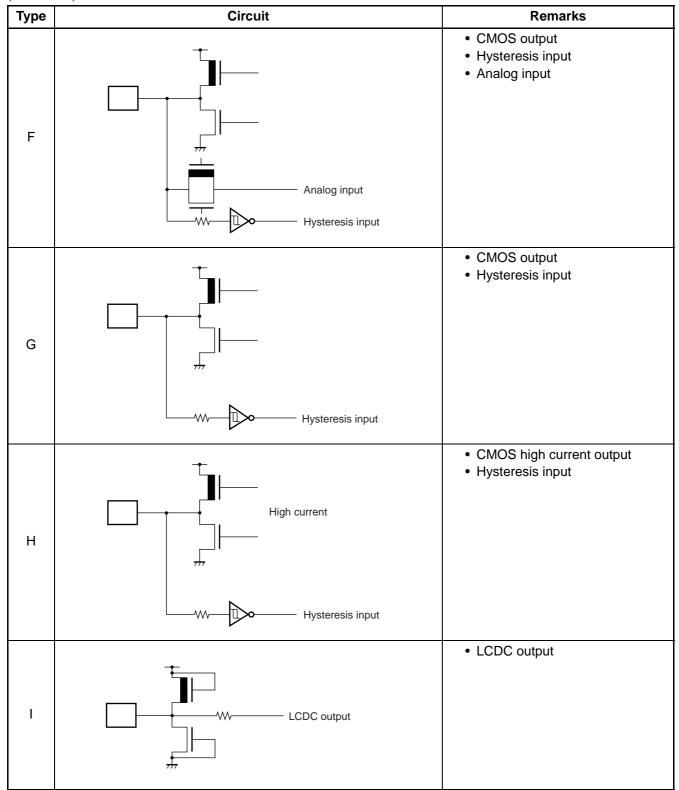
• LQFP 100

■ PIN DESCRIPTIONS

Pin	no.	Ourseland	Circuit	Description		
LQFP	QFP	Symbol	type	Description		
80	82	X0	^	High speed oscillator input pin.		
81	83	X1	A	High speed oscillator output pin.		
78	80	X0A	A	Low speed oscillator input pin. If no oscillator is connected, apply pull-down processing.		
77	79	X1A		Low speed oscillator output pin. If no oscillator is connected, leave open.		
75	77	RST	В	Reset input pin.		
		P00		General purpose input/output port.		
83	85	SIN0	G	UART ch.0 serial data input pin.		
		INT4		INT4 external interrupt input pin.		
		P01		General purpose input/output port.		
84	86	SOT0	G	UART ch.0 serial data output pin.		
		INT5		INT5 external interrupt input pin.		
	87	P02		General purpose input/output port.		
85		SCK0	G	UART ch.0 serial clock input/output pin.		
		INT6		INT6 external interrupt input pin.		
		P03		General purpose input/output port.		
86	88	SIN1	G	UART ch.1 serial data input pin.		
		INT7	1	INT7 external interrupt input pin.		
07			0	General purpose input/output port.		
87	89	SOT1	G	UART ch.1 serial data output pin.		
		P05		General purpose input/output port.		
88	90	SCK1	G	UART ch.1 serial clock input/output pin.		
		TRG		16-bit PPG ch.0-2 external trigger input pin.		
		P06		General purpose input/output port.		
89	91	PPG0	G	16-bit PPG ch.0 output pin.		
	Т		1	16-bit reload timer ch.1 TOT output pin.		
		P07		General purpose input/output port.		
90	90 92		G	16-bit PPG ch.1 output pin.		
TIN1 16-bit reload timer ch.1 TIN		16-bit reload timer ch.1 TIN output pin.				
0.1	00	P10	6	General purpose input/output port.		
91	93	PPG2	G	16-bit PPG ch.2 output pin.		

Pin no.		0	Circuit	Description			
LQFP	QFP	Symbol	type	Description			
		P11		General purpose input/output port.			
92	94	TOT0	G	16-bit reload timer ch.0 TOT output pin.			
		WOT		Real-time watch timer WOT output pin.			
		P12		General purpose input/output port.			
93	95	TIN0	G	16-bit reload timer ch.0 TIN output pin.			
		IN3		Input capture ch.3 trigger input pin.			
94 to 96	96 to 98	P13 to P15	G	General purpose input/output ports.			
94 10 90	90 10 90	IN2 to IN0	G	Input capture ch.0-2 trigger input pins.			
97 to 100	99 to 100, 1 to 2	COM0 to COM3	I	LCD controller/driver common output pins.			
1 to 8, 10 to 13	3 to 10, 12 to 15	SEG0 to SEG11	I	LCD controller/driver segment output pins.			
		P36 to P37		General purpose output ports.			
14 to 15	16 to 17 SEG12 t SEG13		E	LCD controller/driver segment output pins.			
16 to 20	19 to 22	P40 to P47		General purpose input output ports.			
22 to 24	6 to 20, 18 to 22, - 22 to 24 24 to 26		E	LCD controller/driver segment output pins.			
		P90 to P91		General purpose input output ports.			
26 to 27	28 to 29	SEG22 to SEG23	, E	LCD controller/driver segment output pins.			
		P50		General purpose input output ports.			
34	36	INT0	G	INT0 external interrupt input pin.			
		ADTG		A/D converter external trigger input pin.			
36 to 39,	38 to 41,	P60 to P67		General purpose input output ports.			
41 to 44	43 to 46	AN0 to AN7	F	A/D converter input pins.			
		P51		General purpose input output port.			
45	47	INT1	G	INT1 external interrupt input pin.			
	(RX1 *1			CAN interface 1 RX intput pin.			
		P52		General purpose input output port.			
46	48	INT2	G	INT2 external interrupt input pin.			
		(TX1 *1)		CAN interface 1 TX output pin.			
50	52	P53	G	General purpose input output port.			
50	52	INT3	5	INT3 external interrupt input pin.			


Pin	no.	Symbol	Circuit	Description			
LQFP	QFP	Зушрої	type	Description			
		P70 to P73		General purpose input output ports.			
52 to 55	54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	Н	Stepping motor controller ch.0 output pins.			
		P74 to P77		General purpose input output ports.			
57 to 60	59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	н	Stepping motor controller ch.1 output pins.			
		P80 to P83		General purpose input output ports.			
62 to 65	64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	Н	Stepping motor controller ch.2 output pins.			
		P84 to P87		General purpose input output ports.			
67 to 70	69 to 72	2 PWM1P3 PWM1M3 PWM2P3 PWM2M3	н	Stepping motor controller ch.3 output pins.			
72	74	P54	G	General purpose input output port.			
12	74	TX0	G	CAN interface 0 TX output pin.			
73	75	P55	G	General purpose output port.			
13	75	RX0	G	CAN interface 0 RX input pin.			
		P56		General purpose input output port.			
74	76	SGO	G	Sound generator SG0 output pin.			
		FRCK		Free-run timer clock input pin.			
76	78	P57	G	General purpose input output port.			
10	70	SGA)	Sound generator SGA output pin.			
28 to 31	30 to 33	V0 to V3		LCD controller /driver reference power supply pins.			
56, 66	58, 68	DVcc		High current output buffer with dedicated power supply input pins (pin numbers 54-57, 59-62, 64-67, 69-72).			
51, 61, 71	53, 63, 73	DVss		High current output buffer with dedicated power supply GND pins (pin numbers 54-57, 59-62, 64-67, 69-72).			
32	34	AVcc	—	A/D converter dedicated power supply input pin.			
35	37	AVss		A/D converter dedicated GND supply pin.			
33	35	AVRH		A/D converter Vref + input pin. Vref – AVss.			


(Continued)					
Pin	no.	Symbol	Circuit	Description		
LQFP	QFP	Symbol	type	Description		
47 48	49 50	MD0 MD1	С	Test mode input pins. Connect to Vcc.		
49	51	MD2	C/D *2	² Text mode input pin. Connect to Vss.		
25	27	С	_	External capacitor pin. Connect an 0.1 μF capacitor between this pin and Vss.		
21, 82	23, 84	Vcc		Power supply input pins.		
9, 40, 79	11, 42, 81	Vss		GND power supply pins.		

*1: MB90420G series only.

*2 : Type C in the flash ROM models, type D in the mask ROM models.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

Precautions for Handling Semiconductor Devices

• Strictly observe maximum rated voltages (prevent latchup)

When CMOS integrated circuit devices are subjected to applied voltages higher than Vcc at input and output pins other than medium- and high-withstand voltage pins, or to voltages lower than Vss, or when voltages in excess of rated levels are applied between Vcc and Vss, a phenomenon known as latchup can occur. In a latchup condition, supply current can increase dramatically and may destroy semiconductor elements. In using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

Also care must be taken when power to analog systems is switched on or off, to ensure that the analog power supply (AVcc, AVRH), analog input and dedicated power supply for the high current output buffer pins (DVcc) do not exceed the digital power supply (Vcc).

Once the digital power supply (Vcc) is switched on, the analog power (AVcc,AVRH) and dedicated power supply for the high current output buffer pins (DVcc) may be turned on in any sequence.

• Stable supply voltage

Even within the warranted operating range of V_{cc} supply voltage, sudden fluctuations in supply voltage can cause abnormal operation. The recommended stability for ripple fluctuations (P-P values) at commercial frequencies (50 Hz to 60 Hz) should be within 10% of the standard V_{cc} value, and voltage fluctuations that occur during switching of power supplies etc. should be limited to transient fluctuation rates of 0.1 V/ms or less.

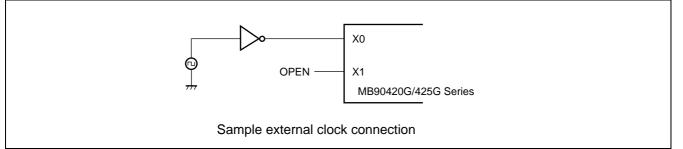
• Power-on procedures

In order to prevent abnormal operation of the internal built-in step-down circuits, voltage rise time during poweron should be attained within 50 μ s (0.2 V to 2.7 V).

• Treatment of unused pins

If unused input pins are left open, they may cause abnormal operation or latchup which may lead to permanent damage to the semiconductor. Any such pins should be pulled up or pulled down through resistance of at least $2 \text{ k}\Omega$.

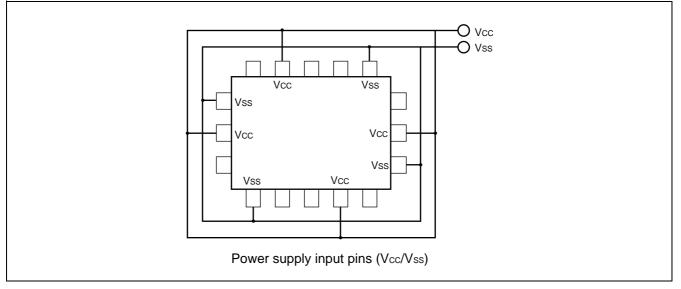
Any unused input/output pins should be left open in output status, or if found set to input status, they should be treated in the same way as input pins.


Any unused output pins should be left open.

• Treatment of A/D converter power supply pins

Even if the A/D converter is not used, pins should be connected so that $AV_{CC} = V_{CC}$, and $AV_{SS} = AVRH = V_{SS}$.

• Use of external clock signals


Even when an external clock is used, a stabilization period is required following a power-on reset or release from sub clock mode or stop mode. Also, when an external clock is used it should drive only the X0 pin and the X1 pin should be left open, as shown in Figure 3.

• Power supply pins

Devices are designed to prevent problems such as latchup when multiple V_{cc} and V_{ss} supply pins are used, by providing internal connections between pins having the same potential. However, in order to reduce unwanted radiation, and to prevent abnormal operation of strobe signals due to rise in ground level, and to maintain total output current ratings, all such pins should always be connected externally to power supplies and ground.

As shown in figure below, all V_{cc} power supply pins must have the same potential. All V_{ss} power supply pins should be handled in the same way. If there are multiple V_{cc} or V_{ss} systems, the device will not operate properly even within the warranted operating range.

In addition, care must be given to connecting the Vcc and Vss pins of this device to a current source with as little impedance as possible. It is recommended that a bypass capacitor of 1.0 μ F be connected between Vcc and Vss as close to the pins as possible.

• Proper sequence of A/D converter power supply analog input

A/D converter power (AVcc, AVRH) and analog input (AN0-AN7) must be applied after the digital power supply (Vcc) is switched on. When power is shut off, the A/D converter power supply and analog input must be cut off before the digital power supply is switched on (Vcc). In both power-on and shut-off, care should be taken that AVRH does not exceed AVcc. Even when pins which double as analog input pins are used as input ports, be sure that the input voltage does not exceed AVcc. (There is no problem if analog power supplies and digital power supplies are turned off and on at the same time.)

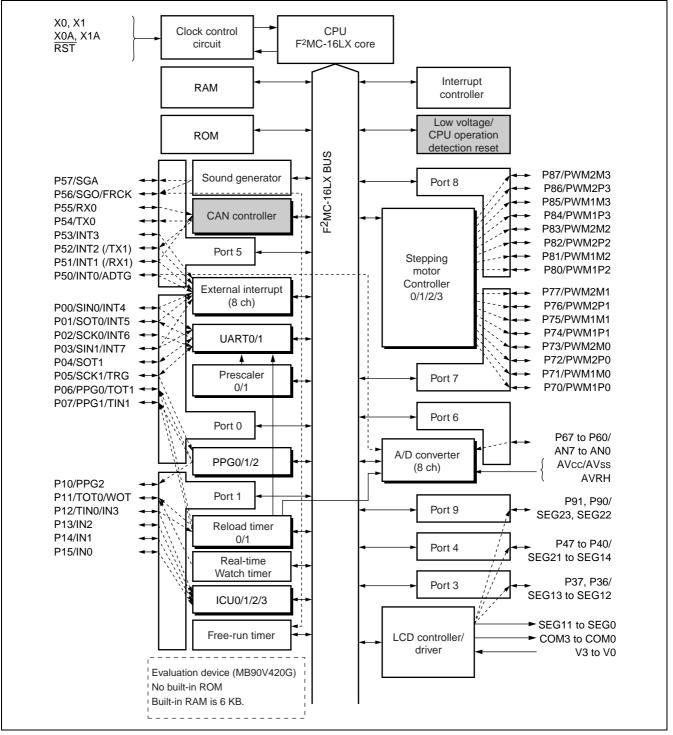
• Handling the power supply for high-current output buffer pins (DVcc, DVss)

Always apply power to high-current output buffer pins (DVcc, DVss) after the digital power supply (Vcc) is turned on. Also when switching power off, always shut off the power supply to the high-current output buffer pins (DVcc, DVss) before switching off the digital power supply (Vcc) . (There will be no problem if high-current output buffer pins and digital power supplies are turned off and on at the same time.)

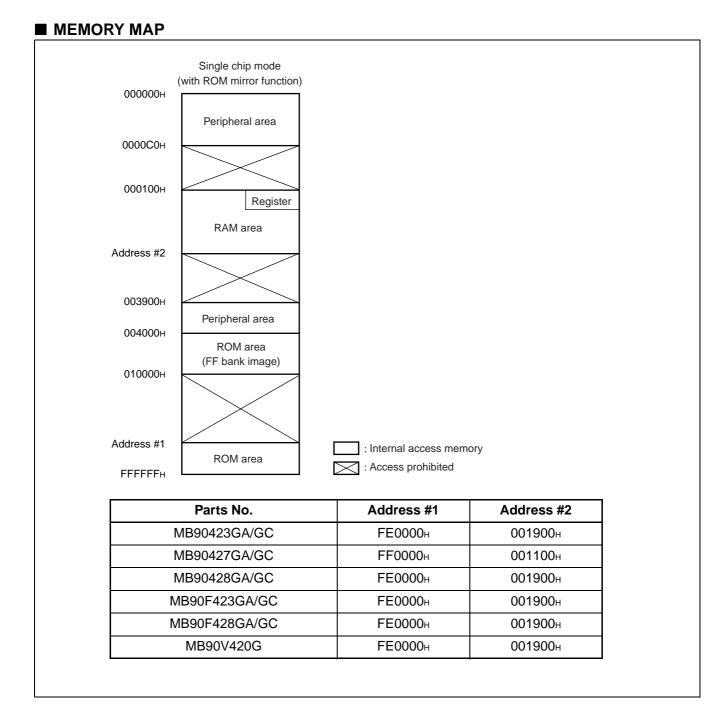
Even when high-current output buffer pins are used as general purpose ports, the power for high current output buffer pins (DVcc, DVss) should be applied to these pins.

Pull-up/pull-down resistance

The MB90420G/425G series does not support internal pull-up/pull-down resistance. If necessary, use external components.


• Precautions for when not using a sub clock signal.

If the X0A and X1A pins are not connected to an oscillator, apply pull-down treatment to the X0A pin and leave the X1A pin open.


• Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

BLOCK DIAGRAM

Note: MB90420G series is equipped with 2-channel CAN interface and MB90425G series is equipped with 1-channel CAN interface. MB90F423GA, MB90423GA, MB90F428GA, MB90427GA and MB90428GA have low volt-age/CPU operation detection reset. MB90F423GC, MB90423GC, MB90F428GC, MB90F428GC, MB90427GC, MB90428GC and MB90V420G do not have low voltage/CPU operation detection reset. See "■ Product Lineup" for detail.

Note : To select models without the ROM mirror function, see the "ROM Mirror Function Selection Module." The image of the ROM data in the FF bank appears at the top of the 00 bank, in order to enable efficient use of small C compiler models. The lower 16-bit address for the FF bank will be assigned to the same address, so that tables in ROM can be referenced without declaring a "far" indication with the pointer. For example when accessing the address 00C000H, the actual access is to address FFC000H in ROM. Here the FF bank ROM area exceeds 48 KB, so that it is not possible to see the entire area in the 00 bank image. Therefore because the ROM data from FF4000H to FFFFFFH will appear in the image from 004000H to 00FFFFH, it is recommended that the ROM data table be stored in the area from FF4000H to FFFFFFH.

■ I/O MAP

Address	Register name	Symbol	Read/write	Peripheral function	Initial value			
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX			
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXX			
02н	(Disabled)							
03н	Port 3 data register	PDR3	R/W	Port 3	ХХ			
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX			
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX			
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX			
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX			
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX			
09н	Port 9 data register	PDR9	R/W	Port 9	XX			
0Ан to 0Fн		(Di	sabled)					
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000			
11 н	Port 1 direction register	DDR1	R/W	Port 1	000000			
12н		(Di	sabled)					
13н	Port 3 direction register	DDR3	R/W	Port 3	00			
14 H	Port 4 direction register	DDR4	R/W	Port 4	00000000			
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000			
16 н	Port 6 direction register	DDR6	R/W	Port 6	00000000			
17 н	Port 7 direction register	DDR7	R/W	Port 7	00000000			
18 н	Port 8 direction register	DDR8	R/W	Port 8	00000000			
19 н	Port 9 direction register	DDR9	R/W	Port 9	0 0			
1А н	Analog input enable	ADER	R/W	Port 6, A/D	11111111			
1Bн to 1Fн		(Di	sabled)					
20н	A/D control status register lower	ADCSL	R/W		00000000			
21н	A/D control status register higher	ADCSH	R/W	A/D convertor	00000000			
22н	A/D data register lower	ADCRL	R	A/D converter	XXXXXXXX			
23н	A/D data register higher	ADCRH	R/W		0 0 1 0 1 XXX			
24н			R/W		XXXXXXXX			
25н	Compare clear register	CPCLR	R/W		XXXXXXXX			
26н	Timor data register	TODT	R/W	16 bit from the	000000000			
27н	Timer data register	TCDT	R/W	16-bit free-run timer	000000000			
28н	Timer control status register lower	TCCSL	R/W		00000000			
29н	Timer control status register higher	TCCSH	R/W		0 0 0 0 0 0			

Address	Register name	Symbol	Read/write	Peripheral function	Initial value
2Ан	PPG0 control status register lower	PCNTL0	R/W		00000000
2Вн	PPG0 control status register higher	PCNTH0	R/W	16-bit PPG0	000000-
2Сн	PPG1 control status register lower	PCNTL1	R/W	16-bit PPG1	00000000
2Dн	PPG1 control status register higher	PCNTH1	R/W		000000-
2Ен	PPG2 control status register lower	PCNTL2	R/W	16-bit PPG2	00000000
2 F н	PPG2 control status register higher	PCNTH2	R/W	TO-DIL FFG2	000000-
30н	External interrupt enable	ENIR	R/W		00000000
31н	External interrupt request	EIRR	R/W	External interrupt	00000000
32н	External interrupt level lower	ELVRL	R/W	External interrupt	00000000
33н	External interrupt level higher	ELVRH	R/W		00000000
34н	Serial mode register 0	SMR0	R/W		00000-00
35н	Serial control register 0	SCR0	R/W		00000100
36н	Input data register 0/ Output data register 0	SIDR0/ SODR0	R/W	UART 0	xxxxxxxx
37н	Serial status register 0	SSR0	R/W		00001000
38н	Serial mode register 1	SMR1	R/W		$0\ 0\ 0\ 0\ 0\ 0\ -0\ 0$
39н	Serial control register 1	SCR1	R/W		00000100
ЗАн	Input data register 1/ Output data register 1	SIDR1/ SODR1	R/W	UART1	xxxxxxxx
3Вн	Serial status register 1	SSR1	R/W		00001000
3Сн		(Dis	sabled)		
3Dн	Clock division control register 0	CDCR0	R/W	Prescaler	0 0 0 0 0
3Ен	CAN wake-up control register	CWUCR	R/W	CAN	0
3Fн	Clock division control register 1	CDCR1	R/W	Prescaler	0 0 0 0 0
40н to 4Fн	Are	ea reserved	for CAN inter	face 0	
50н	Timer control status register 0 lower	TMCSR0L	R/W		00000000
51 н	Timer control status register 0 high- er	TMCSR0H	R/W	16-bit reload timer 0	0 0 0 0 0
52н	Timer register 0/	TMR0/	R/W		XXXXXXXX
53н	Reload register 0	TMRLR0	K/ VV		XXXXXXXX
54н	Timer control status register 1 lower	TMCSR1L	R/W		00000000
55н	Timer control status register 1 high- er	TMCSR1H	R/W	16-bit reload timer 1	0 0 0 0 0
56н	Timer register 1/	TMR1/			XXXXXXXX
57н	Reload register 1	TMRLR1	R/W		XXXXXXXX
58 н	Watch timer control register lower	WTCRL	R/W	Real-time	000000
59н	Watch timer control register higher	WTCRH	R/W	watch timer	00000000

Address	Register name	Symbol	Read/write	Peripheral function	Initial value
5Ан	Sound control register lower	SGCRL	R/W		00000000
5Вн	Sound control register higher	SGCRH	R/W		0 0 0
5Сн	Frequency data register	SGFR	R/W	Sound concretor	XXXXXXXX
5Dн	Amplitude data register	SGAR	R/W	Sound generator	00000000
5Ен	Decrement grade register	SGDR	R/W		XXXXXXXX
5 F н	Tone count register	SGTR	R/W		XXXXXXXX
60н	lanut conture register 0		P		XXXXXXXX
61н	Input capture register 0	IPCP0	R	lanut contume 0/4	XXXXXXXX
62н	la sut conture se cietos 4		D	Input capture 0/1	XXXXXXXX
63н	Input capture register 1	IPCP1	R		XXXXXXXX
64н			P		XXXXXXXX
65н	Input capture register 2	IPCP2	R		XXXXXXXX
66н			5	Input capture 2/3	XXXXXXXX
67н	Input capture register 3	IPCP3	R		XXXXXXXX
68 н	Input capture control status 0/1	ICS01	R/W	Input capture 0/1	00000000
69н			(Disabled)		
6Ан	Input capture control status 2/3	ICS23	R/W	Input capture 2/3	00000000
6Вн			(Disabled)		
6Сн	LCD control register lower	LCRL	R/W	LCD controller/	00010000
6Dн	LCD control register higher	LCRH	R/W	driver	00000000
6Ен	Low voltage/CPU operation detection reset control register	LVRC	R/W	Low voltage/CPU opera- tion detection reset	10111000
6 F н	ROM mirror	ROMM	W	ROM mirror	X X X X X X X 1
70н to 7Fн		Area rese	rved for CAN	interface 1	
80н	PWM control register 0	PWC0	R/W	Stepping motor controller0	000000
81н			(Disabled)		
82H	PWM control register 1	PWC1	R/W	Stepping motor controller1	000000
83н			(Disabled)		
84 _H	PWM control register 2	PWC2	R/W	Stepping motor controller2	000000
85н			(Disabled)		
86н	PWM control register 3	PWC3	R/W	Stepping motor controller3	00000
87н to 9Dн			(Disabled)		

Address	Register name	Symbol	Read/write	Peripheral function	Initial value
9Eн	ROM correction control register	PACSR	R/W	Address match detection function	0 - 0
9 F н	Delay interrupt/release	DIRR	R/W	Delayed interrupt	0
А0н	Power saving mode	LPMCR	R/W	Power saving	00011000
А1н	Clock select	CKSCR	R/W	control circuit	1111100
А2н to А7н		(Dis	sabled)		
А8н	Watchdog control	WDTC	R/W	Watchdog timer	XXXXX 1 1 1
А9н	Time base timer control register	TBTC	R/W	Time base timer	1 0 0 1 0 0
ААн	Watch timer control register	WTC	R/W	Watch timer (sub-clock)	1 X 0 0 0 0 0 0
АВн to ADн		(Dis	sabled)		
АЕн	Flash control register	FMCS	R/W	Flash interface	0 0 0 X 0 XX 0
AFн		(Dis	sabled)		
В0н	Interrupt control register 00	ICR00	R/W		00000111
В1н	Interrupt control register 01	ICR01	R/W	-	00000111
В2н	Interrupt control register 02	ICR02	R/W		00000111
В3н	Interrupt control register 03	ICR03	R/W		00000111
В4н	Interrupt control register 04	ICR04	R/W		00000111
В5н	Interrupt control register 05	ICR05	R/W		00000111
В6н	Interrupt control register 06	ICR06	R/W		00000111
В7н	Interrupt control register 07	ICR07	R/W	Interrupt controller	00000111
В8н	Interrupt control register 08	ICR08	R/W	Interrupt controller	00000111
В9н	Interrupt control register 09	ICR09	R/W		00000111
ВАн	Interrupt control register 10	ICR10	R/W		00000111
ВВн	Interrupt control register 11	ICR11	R/W		00000111
ВСн	Interrupt control register 12	ICR12	R/W		00000111
BDн	Interrupt control register 13	ICR13	R/W		00000111
ВЕн	Interrupt control register 14	ICR14	R/W	1	00000111
BFн	Interrupt control register 15	ICR15	R/W		00000111
C0н to FFн		(Dis	sabled)		(Continued)

Address	Register name	Symbol	Read/write	Peripheral function	Initial value
1FF0н	ROM correction address 0	PADR0	R/W		XXXXXXXX
1FF1н	ROM correction address 1	PADR0	R/W		XXXXXXXX
1FF2н	ROM correction address 2	PADR0	R/W	Address match	XXXXXXXX
1FF3н	ROM correction address 3	PADR1	R/W	detection function	XXXXXXXX
1FF4н	ROM correction address 4	PADR1	R/W		XXXXXXXX
1FF5⊦	ROM correction address 5	PADR1	R/W		XXXXXXXX
3900н to 391Fн		(Di	sabled)		
3920н					11111111
3921н	PPG0 down counter register	PDCR0	R		11111111
3922н	DDO0 sucla softing register	DOODO	14/		XXXXXXXX
3923н	PPG0 cycle setting register	PCSR0	W	16-bit PPG 0	XXXXXXXX
3924н		PDUT0	14/		XXXXXXXX
3925н	PPG0 duty setting register	PDUIU	W		XXXXXXXX
3926н to 3927н		(Di	sabled)		
3928н			D		11111111
3929н	PPG1 down counter register	PDCR1	R		11111111
392Ан	DDC1 evels setting register		14/		XXXXXXXX
392Вн	PPG1 cycle setting register	PCSR1	W	16-bit PPG 1	XXXXXXXX
392Сн	DDC1 duty actting register		14/		XXXXXXXX
392Dн	PPG1 duty setting register	PDUT1	W		XXXXXXXX
392Eн to 392Fн		(Di	sabled)		
3930н		55050	5		11111111
3931н	PPG2 down counter register	PDCR2	R		11111111
3932н					XXXXXXXX
3933н	PPG2 cycle setting register	PCSR2	W	16 bit PPG 2	XXXXXXXX
3934н			147		XXXXXXXX
3935н	PPG2 duty setting register	PDUT2	W		XXXXXXXX
3936н to 3959н		(Di	sabled)		

Address	Register name	Symbol	Read/write	Peripheral function	Initial value
395Ан					XXXXXXXX
395Вн	Sub second data register	WTBR	R/W		XXXXXXXX
395С н				Real time	XXXXX
395Dн	Second data register	WTSR	R/W	watch timer	XXXXXX
395Ен	Minute data register	WTMR	R/W		XXXXXX
395F н	Hour data register	WTHR	R/W		XXXXX
3960н to 396Вн	LCD display RAM	VRAM	R/W	LCD controller/ driver	xxxxxxxx
396Cн to 397Fн		(Di	sabled)		
3980н	DWM1 compose register 0				XXXXXXXX
3981 н	PWM1 compare register 0	PWC10	R/W		XX
3982н				Stepping motor	XXXXXXXX
3983н	PWM2 compare register 0	PWC20	R/W	controller 0	XX
3984н	PWM1 select register 0	PWS10	R/W		000000
3985н	PWM2 select register 0	PWS20	R/W		-0000000
3986н to 3987н		(Di	sabled)		
3988 н		DWO44			XXXXXXXX
3989н	PWM1 compare register 1	PWC11	R/W		XX
398Ан	DWM2 compare register 1	PWC21	R/W	Stepping motor	XXXXXXXX
398 В н	PWM2 compare register 1	PVVCZI	K/ VV	controller 1	XX
398Сн	PWM1 select register 1	PWS11	R/W		000000
398Dн	PWM2 select register 1	PWS21	R/W		-0000000
398Eн to 398Fн		(Di	sabled)		
3990н	PWM1 compare register 2	PWC12	R/W		XXXXXXXX
3991н	PWMT compare register 2	PVVCIZ	K/ VV		XX
3992н	DWM2 compare register 2	PWC22		Stepping motor	XXXXXXXX
3993н	PWM2 compare register 2	F VVG22	R/W	controller 2	XX
3994н	PWM1 select register 2	PWS12	R/W		000000
3995н	PWM2 select register 2	PWS22	R/W		-0000000
3996н to 3997н		(Di	sabled)		

(Continued))								
Address	Register name	Symbol	Read/write	Peripheral function	Initial value				
3998н	DW/M1 compare register 2	PWC13	R/W		XXXXXXXX				
3999н	PWM1 compare register 3	FWCIS	r./ v v		XX				
399Ан	DM/M2 compare register 2	PWC23	R/W	Stepping motor	XXXXXXXX				
399Вн	PWM2 compare register 3	F WC23	D/ VV	controller 3	XX				
399Сн	PWM1 select register 3	PWS13	R/W		000000				
399Dн	PWM2 select register 3	PWS23	R/W		-0000000				
399Eн to 39FFн		(Disabled)							
3A00н to 3AFFн		Area reserved	for CAN interf	ace 0					
3B00н to 3BFFн		Area reserved	for CAN interf	ace 1					
3C00н to 3CFFн		Area reserved	for CAN interf	ace 0					
3D00н to 3DFFн		Area reserved for CAN interface 1							
3E00н to 3EFFн		(Di	isabled)						

- Initial value symbols :
 - "0" initial value 0.
 - "1" initial value 1.
 - "X" initial value undetermined
 - "-" initial value undetermined (none)
- Write/read symbols :
 - "R/W" read/write enabled
 - "R" read only
 - "W" write only
- Addresses in the area 0000_H to 00FF_H are reserved for the principal functions of the MCU. Read access attempts to reserved areas will result in an "X" value. Also, write access to reserved areas is prohibited.

Add	ress	Register name	Symbol	Read/	Initial value		
CAN0	CAN1	Register name	Symbol	write	Initial value		
000040н	000070н	Magazara buffar valid area	BVALR	(R/W)	00000000 00000000		
000041н	000071н	Message buffer valid area	DVALK	(R/VV)			
000042н	000072н	Transmission request register	TREQR	(R/W)	00000000 00000000		
000043н	000073н		INEQN	(17/11)			
000044н	000074н	Transmission cancel register	TCANR	(W)	00000000 00000000		
000045н	000075н		TOANK	(**)			
000046н	000076н	Transmission completed register	TCR	(R/W)	00000000 00000000		
000047н	000077н	Transmission completed register	TOK	(17/11)			
000048н	000078н	Possiving completed register	RCR	(R/W)	00000000 00000000		
000049н	000079н	Receiving completed register	NUK	(12/10)			
00004Ан	00007Ан	Remote request receiving register	RRTRR	(R/W)	00000000 00000000		
00004Вн	00007Вн	Remote request receiving register		(17/11)			
00004Сн	00007Сн	Possiving overrup register	ROVRR	(R/W)	00000000 00000000		
00004Dн	00007Dн	Receiving overrun register	NOVER	(17/11)			
00004Eн	00007Ен	Receiving interrupt enable register	RIER	(R/W)	00000000 00000000		
00004Fн	00007F н	Receiving interrupt enable register	RIER	(R/VV)			
003С00н	003D00н	Control status register	CSR	(R/W, R)	00000 00-1		
003C01н	003D01н	Control status register	USK	$(\Gamma / VV, \Gamma)$			
003С02н	003D02н	Last event indicator register	LEIR	(R/W)	000-0000		
003С03н	003D03н			(1\/ \V)			
003C04н	003D04 _H	RX/TX error counter	RTEC	(R)	00000000 00000000		
003C05н	003D05н		RILO	(13)			
003C06н	003D06н	Bit timing register	BTR	(R/W)	 -1111111 111111111		
003C07 н	003D07н		DIK	(11/11)			
003C08н	003D08н	IDE register	IDER	(R/W)	xxxxxxxx xxxxxxx		
003C09н	003D09н						
003С0Ан	003D0Ан	Transmission RTR register	TRTRR	(R/W)	00000000 00000000		
003С0Вн	003D0BH						
003С0Сн	003D0Cн	Remote frame receiving wait register	RFWTR	(R/W)	xxxxxxxx xxxxxxx		
003C0DH	003D0DH						
003C0Eн	003D0Eн	Transmission interrupt enable register	TIER	(R/W)	00000000 00000000		
003C0Fн	003D0Fн			(1.7, 0.0)			

Address		De vieten nome	0. makes	Read/	Initial value		
CAN0	CAN1	Register name	Symbol	write	initiai value		
003C10н	003D10н						
003C11н	003D11н	Acceptance mask select register	AMSR				
003C12н	003D12н		AWSK	(R/W)	xxxxxxxx xxxxxxx		
003C13н	003D13н						
003C14н	003D14н				xxxxxxxx xxxxxxx		
003C15н	003D15н	Acceptance mask register 0	AMR0	(R/W)			
003C16н	003D16н		AIMINU	(13/00)	xxxxx xxxxxxxx		
003C17н	003D17н						
003C18н	003D18н				xxxxxxxx xxxxxxx		
003C19н	003D19н	Acceptance mask register 1	AMR1	(R/W)			
003C1Ан	003D1Aн		AIMINT	(13/00)	xxxxx xxxxxxxx		
003C1Bн	003D1Bн						
003А00н	003В00н			(=)			
to 003A1Fн	to 003B1F⊦	General purpose RAM	—	(R/W)	XXXXXXXXX to XXXXXXXX		
003А20н	003B20н						
003А21н	003B21н			(R/W)	XXXXXXXXX XXXXXXXX		
003А22н	003В22н	ID register 0	IDR0		XXXXX XXXXXXXX		
003А23н	003В23н				^^^^		
003А24н	003B24н				xxxxxxxx xxxxxxx		
003А25н	003В25н	ID register 1	IDR1				
003А26н	003В26н		IDKI	(R/W)	xxxxx xxxxxxxx		
003А27н	003B27 н						
003А28н	003B28 н				xxxxxxxx xxxxxxx		
003А29н	003B29 н	ID register 2	IDR2	(R/W)			
003А2Ан	003В2Ан		IDIXZ	(11/11/)	xxxxx xxxxxxxx		
003А2Вн	003B2Bн						
003A2CH	003В2Сн				xxxxxxxx xxxxxxx		
003A2Dн	003B2Dн	ID register 3	נפחו	(R/W)			
003A2Eн	003В2Ен		IDR3		XXXXX XXXXXXXX		
003A2Fн	003B2Fн						
003А30н	003В30н						
003А31н	003B31 н	ID register 4	IDR4	(R/W)	XXXXXXXXX XXXXXXXXX		
003А32н	003В32н			(13/99)	xxxxx xxxxxxxx		
003А33н	003В33н						

Add	ress	Pogistor nomo	Symbol	Read/	Initial	value	
CAN0	CAN1	Register name	Symbol	write	Initial	value	
003А34н	003B34н				xxxxxxxx	xxxxxxxx	
003А35н	003В35н	ID register 5	IDR5	(R/W)			
003А36н	003В36н			(10,00)	XXXXX	XXXXXXXX	
003А37н	003В37 н						
003A38н	003B38н				xxxxxxxx	XXXXXXXX	
003А39н	003В39н	ID register 6	IDR6	(R/W)			
003АЗАн	003ВЗАн			(1\/ VV)	XXXXX	XXXXXXXX	
003А3Вн	003В3Вн				~~~~~~~~~~	~~~~~	
003А3Сн	003В3Сн				xxxxxxxx	~~~~~	
003A3DH	003B3Dн	ID register 7	IDR7	(R/W)			
003А3Ен	003B3Eн			(10,00)	XXXXX	XXXXXXXX	
003A3Fн	003B3Fн						
003A40н	003B40н				xxxxxxxx	XXXXXXXX	
003A41 н	003B41 н	D register 8 IDR8 (R/		(R/W) –			
003А42н	003В42н			(10,00)	XXXXX	XXXXXXXX	
003А43н	003В43н						
003A44н	003B44н				xxxxxxxx	XXXXXXXX	
003A45н	003B45 н	ID register 9	IDR9	(R/W)			
003A46н	003B46н		IDI(5	(1\/\V)	(,	XXXXX	XXXXXXXX
003A47 н	003B47 н						
003A48н	003B48 н				XXXXXXXX	XXXXXXXX	
003A49н	003B49 н	ID register 10	IDR10	(R/W)	/0000000	/0000000	
003А4Ан	003В4Ан		IBICIO	(10,10)	XXXXX	XXXXXXXX	
003А4Вн	003B4Bн						
003А4Сн	003В4Сн				xxxxxxxx	XXXXXXXX	
003A4Dн	003B4Dн	ID register 11	IDR11	(R/W)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
003А4Ен	003В4Ен			(1.7.17)	XXXXX	XXXXXXXX	
003A4Fн	003B4Fн						
003А50н	003B50н				XXXXXXXX	XXXXXXXX	
003А51 н	003B51н	ID register 12	IDR12	(R/W)			
003А52н	003B52н			(1.7.17)	XXXXX	XXXXXXXX	
003А53н	003В53н					(Continued)	

Add	ress	Devictor	Complete L	Read/	lu iti al	
CAN0	CAN1	Register name	Symbol	write	Initial	value
003А54н	003B54н				~~~~~	~~~~~
003А55н	003B55н	ID register 12			XXXXXXXX	XXXXXXXXX
003А56н	003В56н	ID register 13	IDR13	(R/W)	~~~~	~~~~~
003А57 н	003B57 н				XXXXX	XXXXXXXXX
003А58 н	003В58н				xxxxxxxx	xxxxxxxx
003А59 н	003B59 н	ID register 14	IDR14	(R/W)	^^^^	~~~~~~
003А5Ан	003В5Ан	ID register 14	IDR 14	(K/VV)	XXXXX	xxxxxxxx
003А5Вн	003В5Вн				~~~~~~	~~~~~
003А5Сн	003В5Сн				xxxxxxxx	~~~~~
003A5Dн	003B5Dн	ID register 15	IDR15	(R/W)	^^^^	XXXXXXXXX
003А5Ен	003В5Ен		IDK 15	(K/VV)	XXXXX XXXXXX	xxxxxxxx
003A5Fн	003B5Fн				~~~~~~	~~~~~~
003А60н	003B60 н	DLC register 0	DLCR0	(R/W)	XXXX	XXXX
003A61 н	003B61 н		DECINO	(1\/ VV)		
003А62н	003B62н	DLC register 1 DLCR1 (R/W)		(0///)	XXXXXX	
003А63н	003В63н			(1\/ VV)		
003A64н	003B64н	DLC register 2	DLCR2	(R/W)		XXXX
003А65н	003B65н		DLONZ	(10/00)		
003А66н	003В66н	DLC register 3	DLCR3	(R/W)	XXXXXXXX	XXXX
003А67н	003B67 н		DEOIG	(10,00)		70000
003А68 н	003B68 н	DLC register 4	DLCR4	(R/W)	XXXX	
003А69 н	003B69н		DLONA	(10,00)		70000
003А6Ан	003В6Ан	DLC register 5	DLCR5	(R/W)		XXXX
003А6Вн	003В6Вн		DEGINO	(10,11)	70000	70000
003A6Cн	003В6Сн	DLC register 6	DLCR6	(R/W)	XXXX	XXXX
003A6Dн	003B6Dн		DEGINO	(10,11)	70000	70000
003А6Ен	003В6Ен	DLC register 7	DLCR7	(R/W)	XXXX	XXXX
003A6Fн	003B6Fн				70000	70000
003А70н	003B70н	DLC register 8	DLCR8	(R/W)	XXXX	XXXX
003A71 н	003B71н			(10,00)		~~~~~
003A72н	003В72н	DLC register 9	DLCR9	(R/W)	XXXX	XXXX
003А73н	003В73н			(10,00)		
003А74н	003В74н	DLC register 10	DLCR10	(R/W)	XXXX	XXXX
003A75 н	003B75н			(1.7.17)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Continued)

САN0 003А76н 003А77н	САN1 003В76н 003В77н	Register name	Symbol	write	Initial value
003A77н	003B77н	DLC register 11	DLCR11	(R/W)	XXXXXXXX
			DLCKII	([[]/]]/ ([]/])	
003A78н	003B78 н	DLC register 12	DLCR12	(R/W)	XXXXXXXX
003A79н	003B79н		DECKTZ	(10,00)	
003А7Ан	003В7Ан	DLC register 13	DLCR13	(R/W)	XXXXXXXX
003А7Вн	003B7Bн		DEORIG	(10,00)	
003А7Сн	003В7Сн	DLC register 14	DLCR14	(R/W)	XXXXXXXX
003A7Dн	003B7Dн		DEORTH	(10,00)	
003А7Ен	003B7Eн	DLC register 15	DLCR15	(R/W)	XXXXXXXX
003A7Fн	003B7Fн		DEORIG	(10,00)	
003А80н to 003А87н	003B80н to 003B87н	Data register 0 (8 bytes)	DTR0	(R/W)	XXXXXXXXX to XXXXXXXX
003А88н to 003А8Fн	003B88н to 003B8Fн	Data register 1 (8 bytes)	DTR1	(R/W)	XXXXXXXXX to XXXXXXXX
003А90н to 003А87н	003B90н to 003B97н	Data register 2 (8 bytes)	DTR2	(R/W)	XXXXXXXX to XXXXXXXX
003А98н to 003А9Fн	003B98н to 003B9Fн	Data register 3 (8 bytes)	DTR3	(R/W)	XXXXXXXX to XXXXXXXX
003AA0н to 003AA7н	003BA0н to 003BA7н	Data register 4 (8 bytes)	DTR4	(R/W)	XXXXXXXX to XXXXXXXX
003АА8н to 003ААFн	003BA8н to 003BAFн	Data register 5 (8 bytes)	DTR5	(R/W)	XXXXXXXX to XXXXXXXX
003AB0н to 003AB7н	003BB0н to 003BB7н	Data register 6 (8 bytes)	DTR6	(R/W)	XXXXXXXX to XXXXXXXX
003AB8н to 003ABFн	003BB8н to 003BBFн	Data register 7 (8 bytes)	DTR7	(R/W)	XXXXXXXX to XXXXXXXX
003AC0н to 003AC7н	003BC0н to 003BC7н	Data register 8 (8 bytes)	DTR8	(R/W)	XXXXXXXX to XXXXXXXX
003AC8н to 003ACFн	003BC8н to 003BCFн	Data register 9 (8 bytes)	DTR9	(R/W)	XXXXXXXX to XXXXXXXX

(Continued)				
Add	ress	Register name	Symbol	Read/	Initial value
CAN0	CAN1		Symbol	write	
003AD0н to 003AD7н	003BD0н to 003BD7н	Data register 10 (8 bytes)	DTR10	(R/W)	XXXXXXXX to XXXXXXXX
003AD8н to 003ADFн	003BD8н to 003BDFн	Data register 11 (8 bytes)	DTR11	(R/W)	XXXXXXXX to XXXXXXXX
003АЕ0н to 003АЕ7н	003BE0н to 003BE7н	Data register 12 (8 bytes)	DTR12	(R/W)	XXXXXXXX to XXXXXXXX
003АЕ8н to 003АЕFн	003BE8н to 003BEFн	Data register 13 (8 bytes)	DTR13	(R/W)	XXXXXXXX to XXXXXXXX
003AF0н to 003AF7н	003BF0н to 003BF7н	Data register 14 (8 bytes)	DTR14	(R/W)	XXXXXXXX to XXXXXXXX
003AF8н to 003AFFн	003BF8н to 003BFFн	Data register 15 (8 bytes)	DTR15	(R/W)	XXXXXXXXX to XXXXXXXX

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

	El ² OS	Int	errup	t vector	Interrupt	control register	Priority
Interrupt source	compatible	Nun	nber	Address	ICR	Address	*2
Reset	×	#08	08н	FFFFDC H	_	—	High
INT9 instruction	×	#09	09н	FFFFD8н		—	▲
Exception processing	×	#10	0Ан	FFFFD4H		—	
CAN0 RX	×	#11	0Вн	FFFFD0H	ICR00	0000B0н *1	
CAN0 TX/NS	×	#12	0Сн	FFFFCC _H	ICRUU	UUUUDUH '	
CAN1 RX	×	#13	0Dн	FFFFC8H	ICR01	0000B1н *1	
CAN1 TX/NS	×	#14	0Ен	FFFFC4 _H	ICKUI	UUUUD IH	
Input capture 0	\bigtriangleup	#15	0Fн	FFFFC0H	ICR02	0000B2н *1	
DTP/external interrupt - ch 0 detected	\bigtriangleup	#16	10н	FFFFBC H	ICR02	UUUUDZH ·	
Reload timer 0	\bigtriangleup	#17	11н	FFFFB8H	ICR03	0000B3н *1	
DTP/external interrupt - ch 1 detected	Δ	#18	12н	FFFFB4 _H	ICRUS	UUUUD3H '	
Input capture 1	\bigtriangleup	#19	13н	FFFFB0H	ICR04	0000B4н *1	
DTP/external interrupt - ch 2 detected	\triangle	#20	14н	FFFFAC H	10K04	0000 D4 H	
Input capture 2	\triangle	#21	15н	FFFFA8H	ICR05	0000B5н *1	
DTP/external interrupt - ch 3 detected	\triangle	#22	16 н	FFFFA4 _H	ICKUS	UUUUDJH	
Input capture 3	\triangle	#23	17 н	FFFFA0H	ICR06	0000B6н *1	
DTP/external interrupt - ch 4/5 detected	\bigtriangleup	#24	18 н	FFFF9CH		0000000	
PPG timer 0	\triangle	#25	19 н	FFFF98H	ICR07	0000 B7 н *1	
DTP/external interrupt - ch 6/7 detected	\bigtriangleup	#26	1Ан	FFFF94 _H		0000071	
PPG timer 1	\bigtriangleup	#27	1Вн	FFFF90H	ICR08	0000B8н *1	
Reload timer 1	\triangle	#28	1Сн	FFFF8CH		UUUUDOH ·	
PPG timer 2	0	#29	1Dн	FFFF88H	ICR09	0000B9н *1	
Real time watch timer	×	#30	1Ен	FFFF84 _H	ICRU9	0000034	
Free-run timer over flow	×	#31	1Fн	FFFF80H	ICR10	0000BAн *1	
A/D converter conversion end	0	#32	20н	FFFF7CH	ICITIO		
Free-run timer clear	×	#33	21н	FFFF78н	ICR11	0000BBн *1	
Sound generator	×	#34	22н	FFFF74 _H	ICIXII	UUUUDDH	
Time base timer	×	#35	23н	FFFF70H	ICR12	0000BCн *1	
Watch timer (sub-clock)	×	#36	24н	FFFF6CH		UUUDCH '	
UART 1 RX	O	#37	25н	FFFF68 _H	ICR13	0000BDн *1	
UART 1 TX	\triangle	#38	26н	FFFF64 _H			
UART 0 RX	0	#39	27н	FFFF60H	ICR14	0000BEн *1	
UART 0 TX	Δ	#40	28н	FFFF5CH		UUUDEH ·	
Flash memory status	×	#41	29н	FFFF58H	ICR15	0000BFн *1	♥
Delayed interrupt generator module	×	#42	2Ан	FFFF54H	101/13	UUUUDFH '	Low

- ◎ : Compatible, with El²OS stop function
- \bigcirc : Compatible
- \bigtriangleup : Compatible when interrupt sources sharing ICR are not in use
- $\times\,$: Not compatible
- *1 : Peripheral functions sharing the ICR register have the same interrupt level.
 - If peripheral functions sharing the ICR register are using expanded intelligent I/O services, one or the other cannot be used.
 - When peripheral functions are sharing the ICR register and one specifies expanded intelligent I/O services, the interrupt from the other function cannot be used.
- *2 : Priority applies when interrupts of the same level are generated.

PERIPHERAL FUNCTIONS

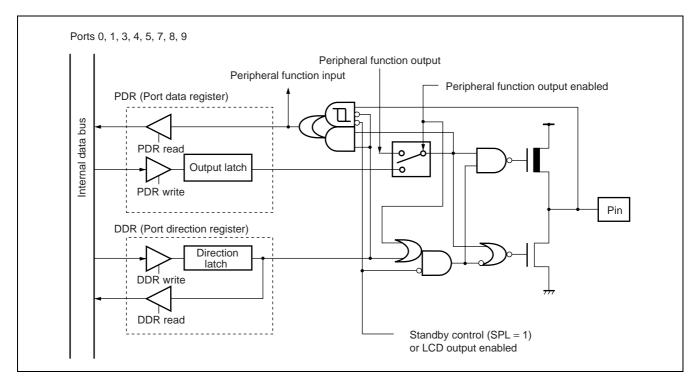
1. I/O Ports

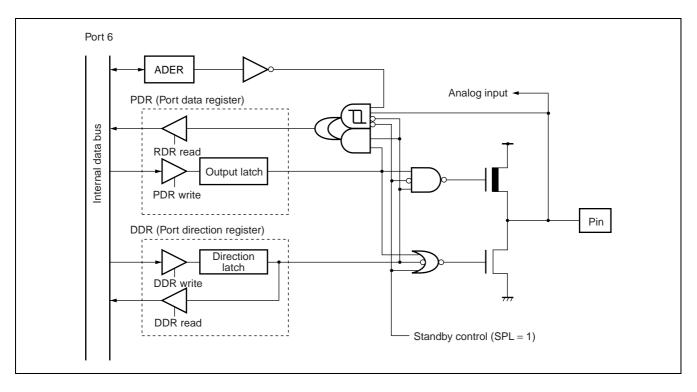
The I/O ports function is to send data from the CPU to be output from I/O pins and load input signals at the I/O pins into the CPU, according to the port data register (PDR). Port input/output at I/O pins can be controlled in bit units by the port direction register (DDR) as required. The following list shows each of the functions as well as the shared peripheral function for each port.

- Port 0 : General purpose I/O port, shared with peripheral functions (external interrupt/UART/PPG)
- Port 1 : General purpose I/O port, shared with peripheral functions (PPG/reload timer/clock timer/ICU)
- Port 3 : General purpose I/O port, shared with peripheral functions (LCD)
- Port 4 : General purpose I/O port, shared with peripheral functions (LCD)
- Port 5 : General purpose I/O port, shared with peripheral functions (External interrupt/CAN/SG)
- Port 6 : General purpose I/O port, shared with peripheral functions (A/D converter)
- Port 7 : General purpose I/O port, shared with peripheral functions (Stepping motor controller)
- Port 8 : General purpose I/O port, shared with peripheral functions (Stepping motor controller)
- Port 9 : General purpose I/O port, shared with peripheral functions (LCD)

(1) List of Functions

Port	Pin name	Input format	Output for- mat	Function
Port 0	P00/SIN0/INT4 to			General purpose I/O port
1 OIL 0	P07/PPG1			Peripheral function
Port 1	P10/PPG2 to			General purpose I/O port
1 OIL 1	P15/IN0	CMOS (hysteresis)	Peripheral function	
Port 3	P36/SEG12 to		General purpose I/O port	
FUIL 3	P37/SEG13	(Automotive level*)		Peripheral function
Port 4	P40/SEG14 to	(General purpose I/O port
FUIL 4	P47/SEG21			Peripheral function
Port 5	P50/INT0 to			General purpose I/O port
FUIL 5	P57/SGA		CMOS	Peripheral function
		Analog		General purpose I/O port
Port 6	P60/AN0 to P67/AN7	CMOS (hysteresis) (Automotive level*)		Peripheral function
Dort 7	P70/PWM1P0 to		_	General purpose I/O port
Port 7	P77/PWM2M1			Peripheral function
Port 8	P80/PWM1P2 to	CMOS (bysteresis)		General purpose I/O port
FUILO	P87/PWM2M3	(hysteresis)		Peripheral function
Port 9	P90/SEG22 to			General purpose I/O port
FUIL 9	P91/SEG23			Peripheral function


Port	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	P07	P06	P05	P04	P03	P02	P01	P00
Port 0	PPG1	PPG0	SCK1	SOT1	SIN1	SCK0	SOT0	SIN0
	TIN1	TOT1			INT7	INT6	INT5	INT4
		_	P15	P14	P13	P12	P11	P10
Port 1			IN0	IN1	IN2	IN3	WOT	PPG2
						TIN0	TOT0	
Dort 2	P37	P36						
Port 3	SEG13	SEG12						
Dort 1	P47	P46	P45	P44	P43	P42	P41	P40
Port 4	SEG21	SEG20	SEG19	SEG18	SEG17	SEG16	SEG15	SEG14
	P57	P56	P55	P54	P53	P52	P51	P50
Port 5	SGA	SGO	RX0	TX0	INT3	INT2	INT1	INT0
		FRCK				TX1	RX1	
Dort 6	P67	P66	P65	P64	P63	P62	P61	P60
Port 6	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
Dort 7	P77	P76	P75	P74	P73	P72	P71	P70
Port 7	PWM2M1	PWM2P1	PWM1M1	PWM1P1	PWM2M0	PWM2P0	PWM1M0	PWM1P0
Dort 0	P87	P86	P85	P84	P83	P82	P81	P80
Port 8	PWM2M3	PWM2P3	PWM1M3	PWM1P3	PWM2M2	PWM2P2	PWM1M2	PWM1P2
Dort 0							P91	P90
Port 9							SEG23	SEG22


*: Range of input voltage.

For ratings see "3. DC Characteristics" in "■ ELECTRICAL CHARACTERISTICS".

Note : Port 6 also functions as an analog input pin. When using this port as a general purpose port, always write "0" to the corresponding analog input enable register (ADER) bit. The ADER bit is initialized to "1" at reset.

(2) Block Diagrams

2. Watchdog Timer/Time Base Timer/Watch Timer

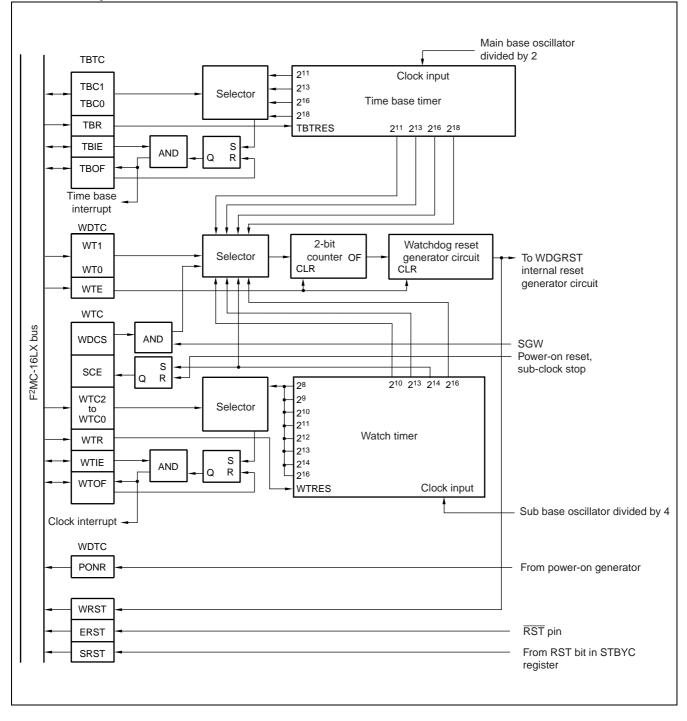
The watchdog timer, timer base timer, and watch timer have the following circuit configuration.

- Watchdog timer : Watchdog counter, control register, watchdog reset circuit
- Time base timer : 18-bit timer, interval interrupt control circuit
- Watch timer : 15-bit timer, interval interrupt control circuit

(1) Watchdog timer function

The watchdog timer is composed of a 2-bit watchdog counter that uses the carry signal from the 18-bit time base timer or 15-bit watch timer as a clock source, plus a control register and watchdog reset control circuit.

After startup, this function will reset the CPU if not cleared within a given time.


(2) Time base timer function

The time base timer is an 18-bit free-run counter (time base counter) synchronized with the internal count clock (base oscillator divided by 2), with an interval timer function providing a selection of four interval times. Other functions include a timer output for an oscillator stabilization wait time and clock feed to the watchdog timer or other operating clocks. Note that the time base timer uses the main clock regardless of the setting of the MCS bit or SCS bit in the CKSCR register.

(3) Watch timer function

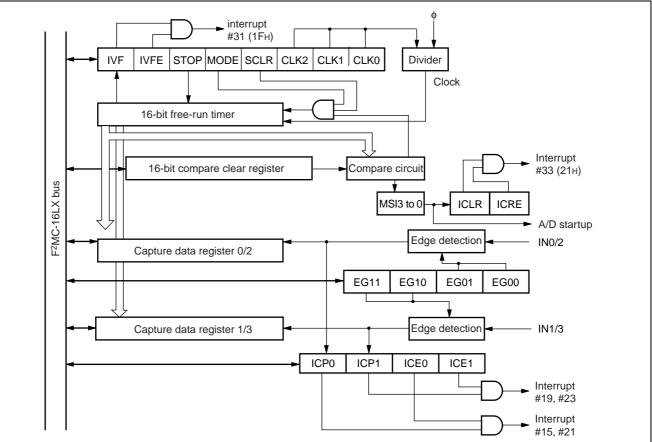
The watch timer provides functions including a clock source for the watchdog timer, a sub clock base oscillator stabilization wait timer, and an interval timer to generate an interrupt at fixed intervals. Note that the watch timer uses the sub clock regardless of the setting of the MCS bit or SCS bit in the CKSCR register.

Block Diagram

3. Input Capture

This circuit is composed of a 16-bit free-run timer and four 16-bit input capture circuits.

(1) Input capture (× 4)


The input capture circuits consist of four independent external input pins and corresponding capture registers and control registers. When the specified edge of the external signal input (at the input pin) is detected, the value of the 16-bit free-run timer is saved in the capture register, and at the same time an interrupt can also be generated.

- The valid edge (rising edge, falling edge, both edges) of the external signal can be selected.
- The four input capture circuits can operate independently.
- The interrupt can be generated from the valid edge of the external input signal.

(2) 16-bit free-run timer (× 1)

The 16-bit free-run timer is composed of a 16-bit up-counter, control register, 16-bit compare register, and prescaler. The output values from this counter are used as the base time for the input capture circuits.

- The counter clock operation can be selected from 8 options. The eight internal clock settings are φ, φ/2, φ/4, φ/8, φ/16, φ/32, φ/64, φ/128 where φ represents the machine clock cycle.
- Interrupts can be generated from overflow events, or from compare match events with the compare register. (Compare match operation requires a mode setting.)
- The counter value can be initialized to "0000H" by a reset, soft clear, or a compare match with the compare register.

(3) Block diagram

4. 16-bit Reload Timer

The 16-bit reload timer can either count down in synchronization with three types of internal clock signals in internal clock mode, or count down at the detection of the designated edge of an external signal. The user may select either function. This timer defines a transition from 0000_{H} to FFFF_H as an underflow event. Thus an underflow occurs when counting from the value [Reload register setting + 1].

A selection of two counter operating modes are available. In reload mode, the counter is reset to the count value and continues counting after an underflow, and in one-shot mode the count stops after an underflow. The counter can generate an interrupt when an underflow occurs, and is compatible with the expanded intelligent I/O services (EI²OS).

Clock mode	Counter mode	16-bit reload timer operation
	Reload mode	Soft trigger operation
Internal clock mode	One-shot mode	External trigger operation External gate input operation
Event count mode	Reload mode	Soft trigger operation
(external clock mode)	One-shot mode	Soft trigger operation

(1) 16-bit Reload timer operating modes

(2) Internal clock mode

One of three input clocks is selected as the count clock, and can be used in one of the following operations.

Soft trigger operation

When "1" is written to the TRG bit in the timer control status register (TMCSR0/1), the count operation starts. Trigger input at the TRG bit is normally valid with an external trigger input, as well as an external gate input.

• External trigger operation

Count operation starts when a selected edge (rising, falling, both edges) is input at the TIN0/1 pin.

• External gate input operation

Counting continues as long as the selected signal level ("L" or "H") is input at the TIN0/1 pin.

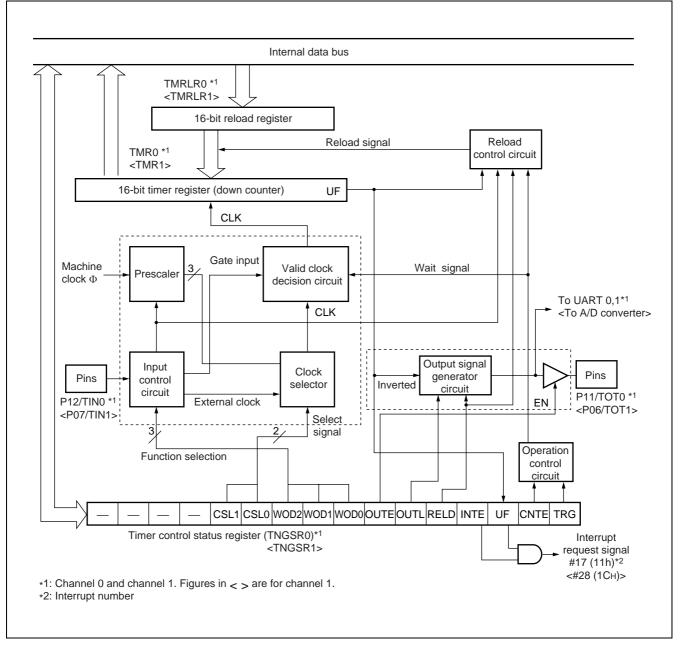
(3) Event count mode (External clock mode)

In this mode a down count event occurs when a selected valid edge (rising, falling, both edges) is input at the TIN0/1 pin. This function can also be used as an interval timer when an external clock with a fixed period is used.

(4) Counter operation

Reload mode

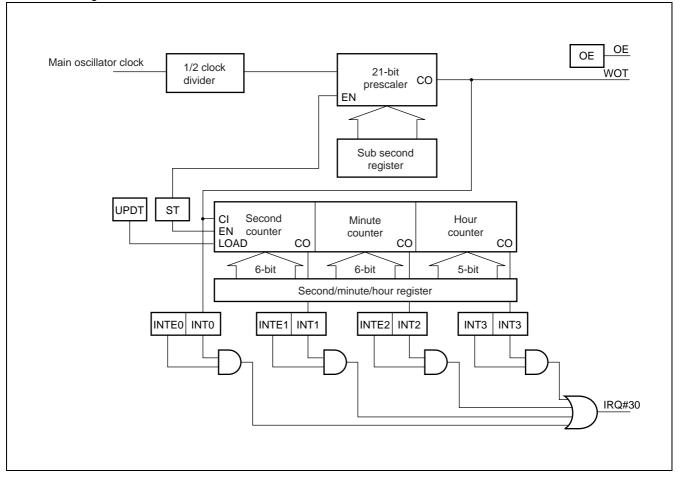
In down count operation, when an underflow event (transition from " 0000_{H} " to "FFFF_H") occurs, the set count value is reloaded and count operation continues. The function can be used as an interval timer by generating an interrupt request at each underflow event. Also, a toggle waveform that inverts at each underflow can be output from the TOT0/1 pin.


Counter clock	Counter clock period	Interval time	
	2¹/ϕ (0.125 μs)	0.125 μs to 8.192 ms	
Internal clock	2³/ϕ (0.5 μs)	0.5 μs to 32.768 ms	
	2 ⁵ /φ (2.0 μs)	2.0 μs to 131.1 ms	
External clock	2 ³ /φ or greater (0.5 μs)	0.5 μs or greater	

 ϕ : Machine clock cycle. Figures in () are values at machine clock frequency 16 MHz.

(5) One-shot mode

In down count operation, the count stops when an underflow event (transition from " 0000_{H} " to "FFFF_H") occurs. This function can generate an interrupt at each underflow. While the counter is operating, a rectangular wave form indicating that the count is in progress can be output form the TOT0 and TOT1 pins.


(6) Block diagram

5. Real Time Watch Timer

The real time watch timer is composed of a real time watch timer control register, sub second data register, second/minute/hour data registers, 1/2 clock divider, 21-bit prescaler and second/minute/hour counters. Because the MCU oscillation frequency operates on a given real time watch timer operation, a 4 MHz frequency is assumed. The real time watch timer operates as a real world timer and provides real world time information.

· Block diagram

6. PPG Timer

The PPG timer consists of a prescaler, one 16-bit down-counter, 16-bit data register with buffer for period setting, and 16-bit compare register with buffer for duty setting, plus pin control circuits.

The timer can output pulses synchronized with an externally input soft trigger. The period and duty of the output pulse can be adjusted by rewriting the values in the two 16-bit registers.

(1) PWM function

Programmable to output a pulse, synchronized with a trigger.

Can also be used as a D/A converter with an external circuit.

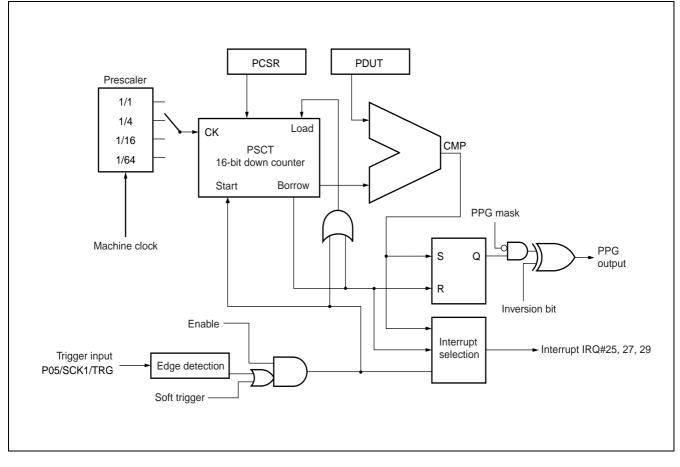
(2) One-shot function

Detects the edge of a trigger input, and outputs a single pulse.

(3) Pin control

- Set to "1" at a duty match (priority) .
- Reset to "0" at a counter borrow event
- Has a fixed output mode to output a simple all "L" (or "H") signal.
- Polarity can be specified

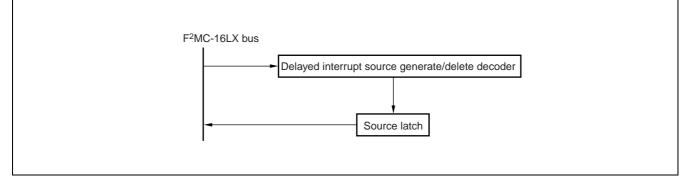
(4) 16-bit down counter


- Select from four types of counter operation clocks. Four internal clocks (φ, φ/4, φ/16, φ/64) φ : Machine clock cycles.
- The counter value can be initialized to "FFFFH" at a reset or counter borrow event.

(5) Interrupt requests

- Timer startup
- Counter borrow event (period match)
- Duty match event
- · Counter borrow event (period match) or duty match event

(6) Multiple channels can be set to start up at an external trigger, or to restart during operation.


(7) Block diagram

7. Delayed Interrupt Generator Module

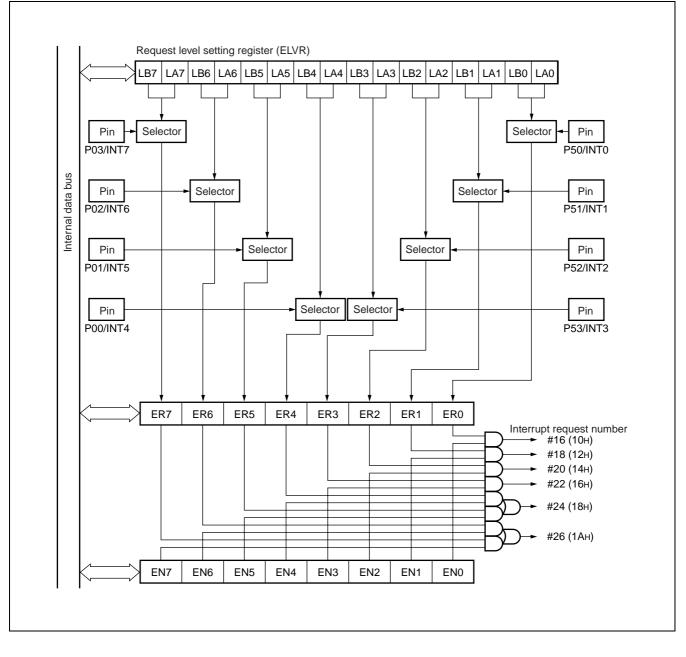
The delayed interrupt generator module is a module that generates interrupts for task switching. This module makes it possible to use software to generate/cancel interrupt requests to the F²MC-16LX CPU.

Block diagram

8. DTP/External Interrupt Circuit

The DTP (Data transfer peripheral) /external interrupt circuit is located between an externally connected peripheral device and the $F^2MC-16LX$ CPU and sends interrupt requests or data transfer requests generated from the peripheral device to the CPU, thereby generating external interrupt requests or starting the expanded intelligent I/O services (EI²OS).

(1) DTP/external interrupt function


The DTP/external interrupt function uses a signal input from the DTP/external interrupt pin as a startup source. And it is accepted by the CPU by the same procedure as a normal hardware interrupt, and can generate an external interrupt or start the expanded intelligent I/O service (EI²OS).

When the interrupt is accepted by the CPU, if the corresponding expanded intelligent I/O service (EI²OS) is prohibited the interrupt operates as an external interrupt function and branches to an interrupt routine. If the EI²OS is permitted the interrupt functions as a DTP function, using EI²OS for automatic data transfer, then branching to an interrupt routine after the completion of the specified number of data transfers.

	External interrupt	DTP function					
Input pins	8 pins (P50/INT0/ADTG to P53/INT3, P00	D/SIN0/INT4 to P03/INT7)					
	Request level setting register (ELVR) sets the detection level, or selected edge for each pin						
Interrupt sources	"H" level/ "L" level/ rising edge/falling edge input	"H" level/ "L" level input					
Interrupt numbers	#16 (10н) , #18 (12н) , #20 (14н) , #22 (16	бн) , #24 (18н) , #26 (1Ан)					
Interrupt control	DTP/interrupt enable register (ENIR) permits/prohibits interrupt request output						
Interrupt flags	DTP/interrupt enable register (EIRR) stor	es interrupt sources					
Process selection	When EI ² OS prohibited (ICR : ISE = 0) When EI ² OS is enabled (ICR : ISE =						
Processing	Branch to external interrupt processing routine	El ² OS performs automatic data transfer, then after a specified number of cycles, branches to an interrupt routine					

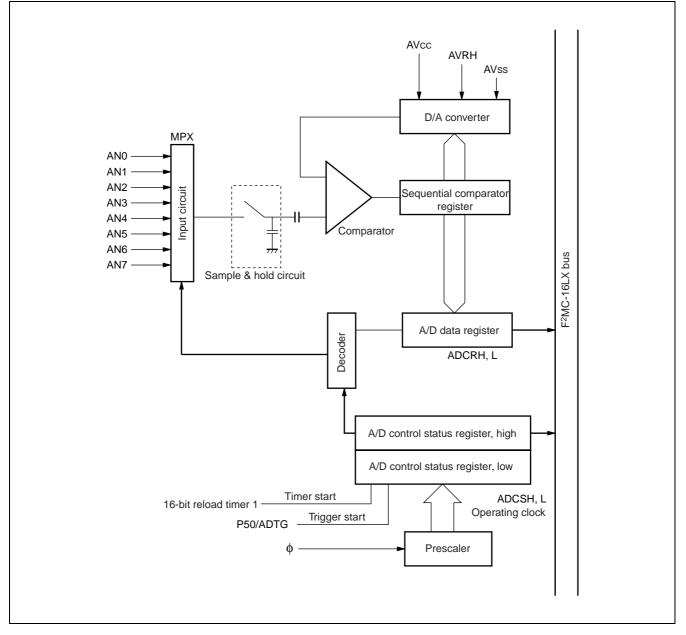
ICR : Interrupt control register

(2) Block diagram

9. 8/10-bit A/D Converter

The 8/10-bit A/D converter has functions for using RC sequential comparator conversion format to convert analog input voltage into 10-bit or 8-bit digital values. The input signal is selected from 8-channel analog input pins, and the conversion start can be selected from three types : by software, 16-bit reload timer 1 or a trigger input from an external signal pin.

(1) 8/10-bit A/D converter functions


The A/D converter takes analog voltage signals (input voltage) input at analog input pins, and converts these to digital values, providing the following features.

- Minimum conversion time is 6.13 μ s (at machine clock frequency of 16 MHz, including sampling time) .
- Minimum sampling time is 3.75 μs (at machine clock 16 MHz)
- The conversion method is an RC sequential conversion in comparison with a sample hold circuit.
- Either 10-bit or 8-bit resolution can be selected.
- The analog input pin can select from 8 channels by a program setting.
- At completion of A/D conversion, an interrupt request can be generated, or EI²OS can be started.
- Because the conversion data protection function operates in an interrupt enabled state, no data is lost even in continuous conversion.
- The conversion start source may be selected from : software, 16-bit reload timer 1 (rising edge), or external trigger input (falling edge).

Conversion mode	Single conversion operation	Scan conversion operation			
Single conversion mode	Converts the specified channel (1 channel only) one time, then stops.	Converts multiple consecutive channels (up to 8 channels may be specified) one time, then stops.			
Continuous conversion mode	Converts the specified channel (1 channel only) repeatedly.	Converts multiple consecutive channels (up to 8 channels may be specified) repeatedly.			
Stop conversion mode	Converts the specified channel (1 channel only) one time, then pauses, waits until the next start is applied.	Converts multiple consecutive channels (up to 8 channels may be specified), however pauses after conversion of each channel, waits until the next start is applied.			

Three conversion modes are available

(2) Block diagram

10. UART

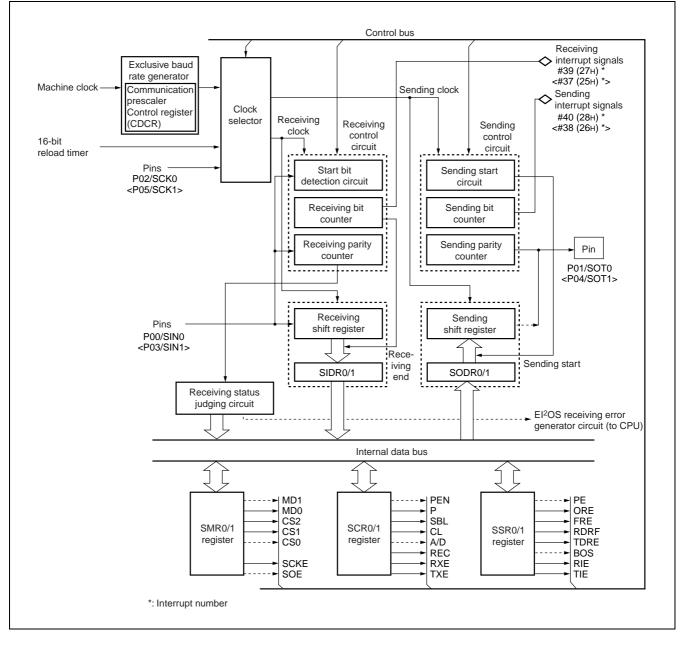
The UART is a general purpose serial data communication interface for synchronous communication, or asynchronous (start-stop synchronized) communication with external devices. Functions include normal bi-directional functions, as well as master/slave type communication functions (multi-processor mode : master side only supported).

(1) UART Functions

The UART is a general purpose serial data communication interface for sending and receiving of serial data with other CPU's or peripheral devices, and provides the following functions.

	Functions
Data buffer	Full duplex double buffer
Transfer modes	Clock synchronous (no start/stop bits)Clock asynchronous (start-stop synchronized)
Baud rate	 Exclusive baud rate generator provides a selection of 8 rates External clock input enabled Internal clock (can use internal clock feed from 16-bit reload timer)
Data length	7-bit (asynchronous normal mode only)8-bit
Signal type	NRZ (Non return to zero)
Receiving error detection	 Framing errors Overrun errors Parity errors (not enabled in multiprocessor mode)
Interrupt request	 Receiving interrupt (receiving completed, receiving error detection) Sending interrupt (sending completed) Sending/receiving both compatible with expanded intelligent I/O services (EI²OS)
Master/slave type communication function (multi-processor mode)	1 (master) -to-n (slave) communication enabled (only master side supported) .

Note : The UART in clock synchronous transfer does not add start bits or stop bits, but transfers data only.


Operating mode		Data I	ength	Synchronization	Stop bit length	
	Operating mode	No parity	Parity	Synchronization	Stop bit length	
0	Normal mode	7-bit or 8-bit		Asynchronous	- 1-bit or 2-bit *2	
1	Multi-processor mode	8 + 1 *1 —		Asynchronous		
2	Normal mode	8 —		Synchronous	None	

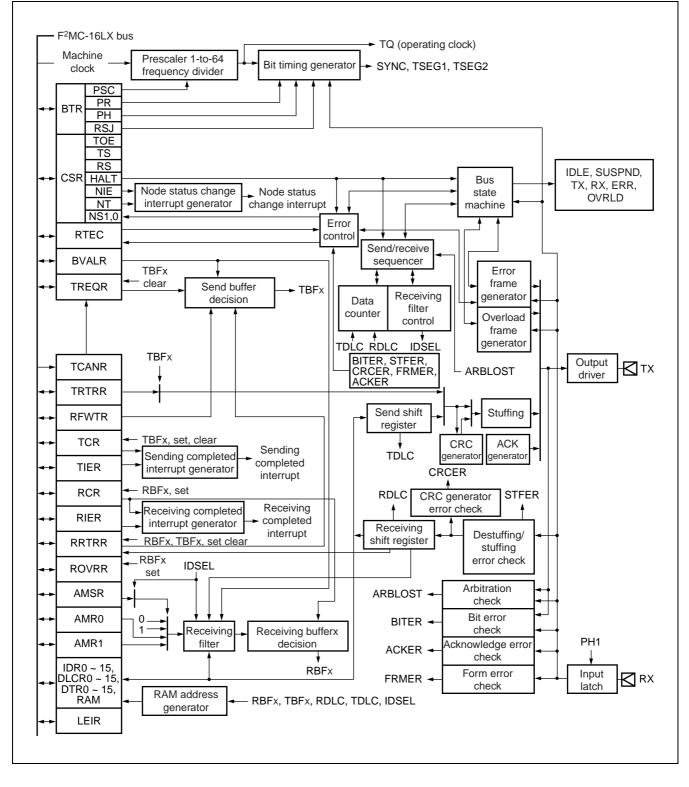
- : Setting not available

*1 : "+" indicates an address/data selection bit (A/D) for communication control.

*2 : In receiving only one stop bit is detected.

(2) Block diagram

11. CAN Controller


The CAN controller is a self-contained module within a 16-bit microcomputer ($F^2MC-16LX$). The CAN (controller area network) controller is the standard protocol for serial transmissions among automotive controllers and is widely used in the industry.

(1) CAN controller features

The CAN controller has the following features.

- Conforms to CAN specifications version 2.0 A and B.
 Supports sending and receiving in standard frame and expanded frame format.
- Supports data frame sending by means of remote frame receiving.
- 16 sending/receiving message buffers
 29-bit ID and 8-byte data
 Multi-level message buffer configuration
- Supports full bit compare, full bit mask as well as partial bet mask filtering.
- Provides two receiving mask registers for either standard frame or expanded frame format.
- Bit speed programmable from 10 KB/s to 1 MB/s (at machine clock 16 MHz)
- CAN WAKE UP function
- The MB90420G series has a two-channel built-in CAN controller. The MB90425G series has a 1-channel builtin CAN controller.

(2) Block diagram

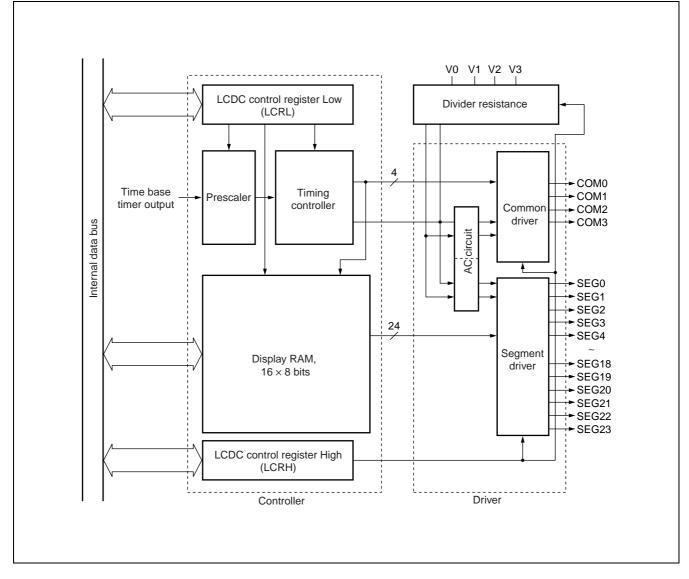
12. LCD Controller/Driver

The LCD controller/driver has a built-in 16×8 -bit display data memory, and controls the LCD display by means of four common outputs and 24 segment outputs. A selection of three duty outputs are available. This block can drive an LCD (liquid crystal display) panel directly.

(1) LCD controller/driver functions

The LCD controller/driver provides functions for directly displaying the contents of display data memory (display RAM) on the LCD panel by means of segment output and common output.

- LCD drive voltage divider resistance is built-in. External divider resistance can also be connected.
- Up to 4 common outputs (COM0 to COM3) and 24 segment outputs (SEG0 to SEG23) can be used.
- 16-byte display data memory (display RAM) is built-in.
- The duty can be selected at 1/2, 1/3, 1/4 (limited by bias setting).
- Drives the LCD directly.


Bias	1/2 duty	1/3 duty	1/4 duty		
1/2 bias	0	×	×		
1/3 bias	×	0	0		

 $\odot\,$: Recommended mode

 \times : Use prohibited

Note : When the SEG12 to SEG23 pins have been selected as general purpose ports by the LCRH setting, they cannot be used for segment output.

(2) Block diagram

13. Low voltage/Program Looping Detection Reset Circuit

The Low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.

The Program Looping detection reset circuit is a count clock with a 20-bit counter that generates an internal reset signal if not cleared within a given time after startup.

(1) Low voltage detection reset circuit

Detection voltage	
$4.0 \text{ V} \pm 0.3 \text{ V}$	

When a low voltage condition is detected, the low voltage detection flag (LVRC : LVRF) is set to "1" and an internal reset signal is output.

Because the low voltage detection circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.

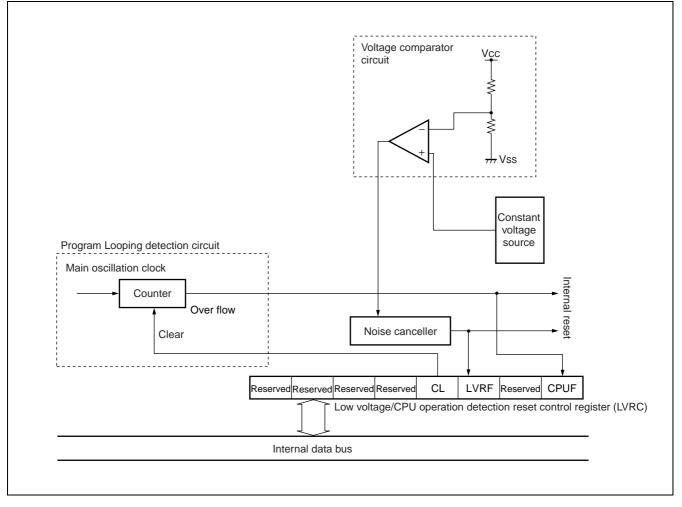
During an internal RAM write cycle, an internal reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection circuit is suppressed.

(2) Program Looping detection reset circuit

The Program Looping detection reset circuit is a counter that prevents program looping. The counter starts automatically after a power-on reset, and must be continually cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated form the Program Looping detection circuit has a width of 5 machine cycles.

Interval duration					
2 ²⁰ /Fc (Approx. 262 ms *)					

*: This value assumes an oscillation clock waveform of 4 MHz.

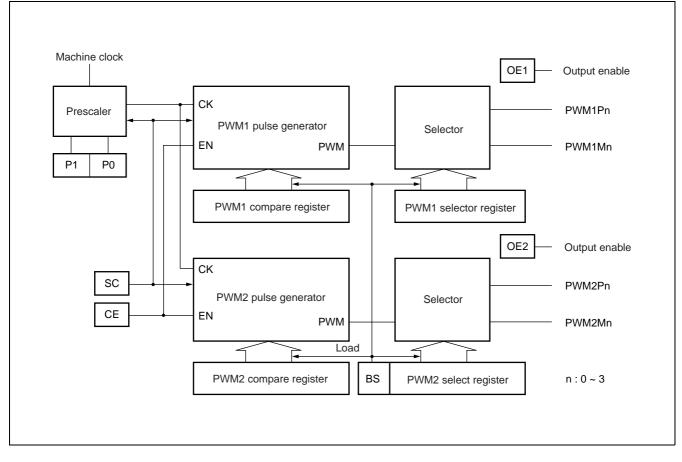

During recovery from standby mode the detection period is the maximum interval plus 20 $\mu s.$

This circuit does not operate in modes where CPU operation is stopped.

The Program Looping detection reset circuit counter is cleared under any of the following conditions.

- 1. Writing "0" to the LVRC register CL bit
- 2. Internal reset
- 3. Main oscillation clock stop
- 4. Transition to sleep mode
- 5. Transition to time base timer mode or clock mode

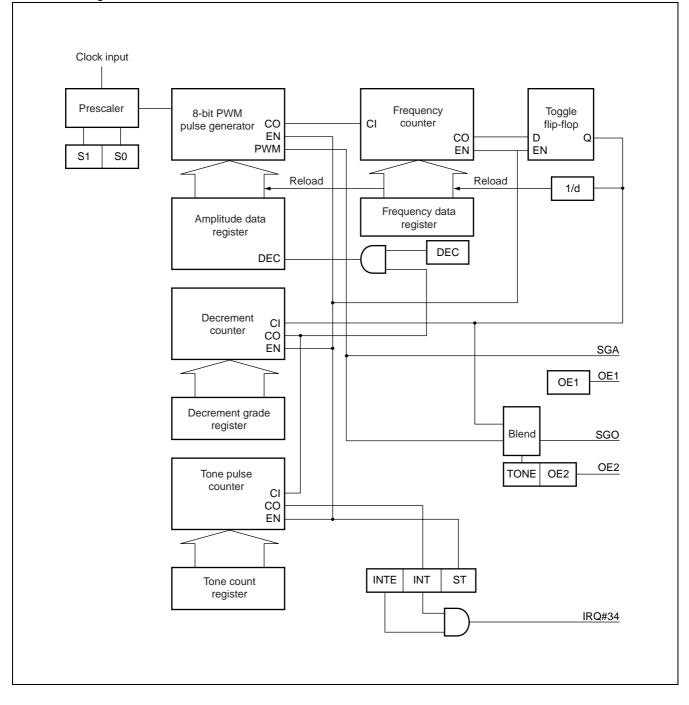
(3) Block diagram



14. Stepping Motor Controller

The stepping motor controller is composed of two PWM pulse generators, four motor drivers and selector logic circuits.

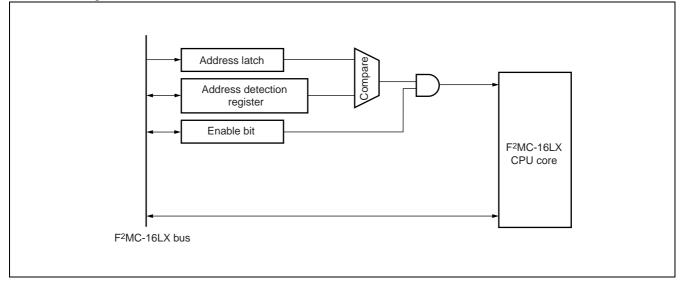
The four motor drivers have a high output drive capacity and can be directly connected to the four ends of two motor coils. They are designed to operate together with the PWM pulse generators and selector logic circuits to control motor rotation. A synchronization mechanism assures synchronization of the two PWM pulse generators.


Block diagram

15. Sound Generator

The sound generator is composed of a sound control register, frequency data register, amplitude data register, decrement grade register, tone count register, PWM pulse generator, frequency counter, decrement counter, and tone pulse counter.

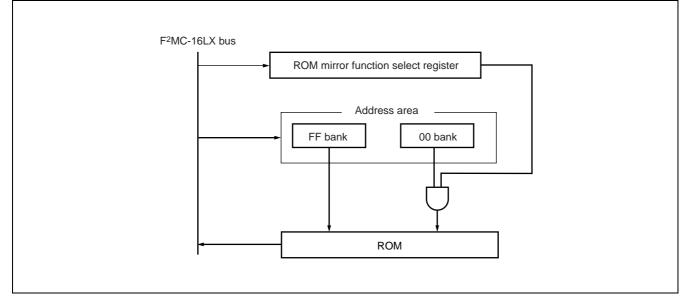
Block diagram



16. Address Match Detect Function

If the address setting is the same as the address detection register, an INT9 instruction is executed. The integrated address match detection function can be implemented by processing the INT9 interrupt service routine.

Two address registers are used, each with its own compare enable bit. When there is a match between the address register and program counter, and the compare enable bit is set to "1", the INT9 instruction is forcibly executed by the CPU.


· Block diagram

17. ROM Mirror Function Select Module

The ROM mirror function select module uses a select register setting to enable the contents of ROM allocated to the FF bank to be viewed in the 00 bank.

Block diagram

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

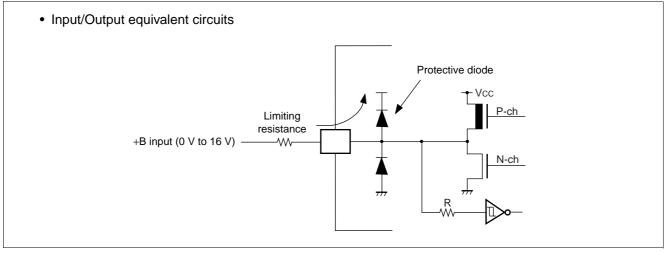
Deremeter	Symbol	Rat	ing	Unit	Remarks	
Parameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	AVcc = Vcc*2	
Power supply voltage	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH*2	
	DVcc	Vss - 0.3	Vss + 6.0	V	$DVcc = Vcc^{*2}$	
Input voltage*1	Vi	Vss - 0.3	Vcc + 0.3	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vcc + 0.3	V		
Maximum clamp current		- 400	+ 400	μΑ	*7	
Total maximum clamp current	Σ Iclamp	—	4	mA	*7	
"L"level maximum		—	15	mA	Other than P70 to P77, and P80 to P87	
output current*4	OL2	—	40	mA	P70 to 77, P80 to87	
"L"level average output	OLAV1	—	4	mA	Other than P70 to P77, and P80 to P87	
current*5	OLAV2	—	30	mA	P70 to 77, P80 to 87	
"L"level maximum	ΣI_{OL1}	—	100	mA	Other than P70 to P77, and P80 to P87	
total output current	ΣI_{OL2}	—	330	mA	P70 to 77, P80 to 87	
"L"level average total	Σ IOLAV1	—	50	mA	Other than P70 to P77, and P80 to P87	
output current	ΣI_{OLAV2}		250	mA	P70 to 77, P80 to 87	
"H"level maximum	І он1 ^{*4}	—	-15	mA	Other than P70 to P77, and P80 to P87	
output current	І он2 ^{*4}	—	-40	mA	P70 to 77, P80 to 87	
"H"level average	І ОНАV1 ^{*5}	—	-4	mA	Other than P70 to P77, and P80 to P87	
output current	OHAV2*5	—	-30	mA	P70 to 77, P80 to 87	
"H"level maximum	Σloh1	—	-100	mA	Other than P70 to P77, and P80 to P87	
total output current	Σ Ι ΟH2	—	-330	mA	P70 to 77, and P80 to 87	
"H"level average total	Σ IOHAV1 ^{*6}		-50	mA	Other than P70 to P77, and P80 to P87	
output current	Σ Iohav2 ^{*6}	—	-250	mA	P70 to 77, P80 to 87	
Power consumption	PD		500	mW		
Operating temperature	TA	-40	+105	°C		
Storage temperature	Tstg	-55	+150	°C		

*1 : The parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0.0 V.$

*2 : AVcc, AVRH and DVcc shall never exceed Vcc. Also, AVRH shall never exceed AVcc.

*3 : The maximum current to/from and input is limited by some means with extenal components, the I_{CLAMP} rating supersedes the V_I rating.

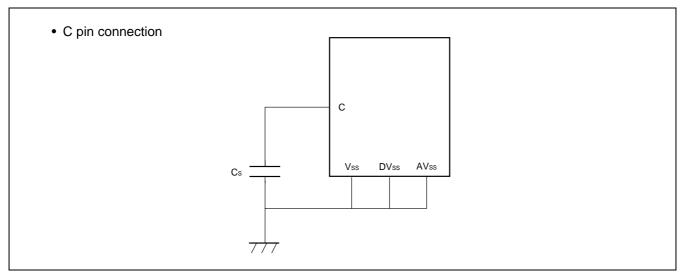
*4 : Maximum output current is defined as the peak value of the current of any one of the corresponding pins.


*5 : Average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins. The "average value" can be calculated from the formula of "operating current" times "operating factor".

(Continued)

(Continued)

- *6 : Average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins. The "average value" can be calculated from the formula of "operating current" times "operating factor".
- *7 : Applicable to pins : P00 to P07, P10 to P15, P50 to P57, P70 to P77, P80 to P87
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

 $(V_{ss} = DV_{ss} = AV_{ss} = 0.0 V)$

Parameter	Symbol	Val	ue	Unit	Remarks			
Farameter	Symbol	Min	Max	Unit	iteniaitta			
		3.7	5.5	v	(MB90F428GA, MB90F423GA, MB90428GA, MB90427GA, MB90423GA) Low voltage detection reset starts to work when power supply voltage is 4.0 V \pm 0.3 V.			
Power supply	Vcc AVcc DVcc	3.0	5.5	V	(MB90F428GC, MB90F423GC, MB90428GC, MB90427GC, MB90423GC)			
voltage		4.3	5.5	v	Holding stop operation status (MB90F428GA, MB90F423GA, MB90428GA, MB90427GA, MB90423GA)			
		3.0	5.5	v	Holding stop operation status (MB90F428GC, MB90F423GC, MB90428GC, MB90427GC, MB90423GC)			
Smoothing capacitor*	Cs	0.1	1.0	μF	Use a ceramic capacitor or other capacitor of equivalent frequency characteristics. A bypass capacitor on the V_{CC} pin should have a capacitance greater than Cs.			
Operating temperature	TA	-40	+105	°C				

*: For smoothing capacitor Cs connections, see the illustration below.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

_		ymbol Pin Conditions V						
Parameter	Symbol	name	Conditions	Min Typ Max		Unit	Remarks	
"H"level input voltage	Vihs			0.8 Vcc		Vcc + 0.3	V	CMOS hysteresis Automotive level input pin*1
	VIHM			Vcc-0.3		Vcc + 0.3	V	MD pin*2
"L"level input voltage	Vils		_	Vss – 0.3		0.5 Vcc	V	CMOS hysteresis Automotive level input pin*1
	Vilm	—	—	V ss - 0.3		$V_{\text{SS}} + 0.3$	V	MD pin*2
			Operating frequency	_	45	72	mA	MB90F428GA/GC MB90F423GA/GC
	lcc		F _{CP} = 16 MHz, normal operation	_	38	61	mA	MB90428GA/GC MB90427GA/GC MB90423GA/GC
			Operating frequency		15	24	mA	MB90F428GA/GC MB90F423GA/GC
	lccs		$F_{CP} = 16 \text{ MHz},$ sleep mode		13	21	mA	MB90428GA/GC MB90427GA/GC MB90423GA/GC
Power supply current*3	Істѕ		Operating frequency $F_{CP} = 2 MHz$, time base timer mode	_	0.75	1.0	mA	
	Iccl		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ subclock operation	_	0.35	0.7	mA	
	Iccls	Vcc	Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ sub sleep operation	_	10	30	μΑ	MB90F428GC MB90F423GC MB90428GC MB90427GC MB90423GC
	Ісст		Operating frequency $F_{CP} = 8 \text{ kHz}, T_A = +25 \text{ °C},$ clock mode	_	40	100	μΑ	MB90F428GA MB90F423GA MB90428GA MB90427GA MB90423GA
		. T _A = +	T _A = + 25 °C,		5	20	μΑ	MB90F428GC MB90F423GC MB90428GC MB90427GC MB90423GC
	ICCH stop mode		40	100	μΑ	MB90F428GA MB90F423GA MB90428GA MB90427GA MB90423GA		

(Vcc = 5.0 V±10%, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

(Continued)

Demonster	Sym	Din nome	Con ditions		Value		l Init	Domorko
Parameter	bol Fin hame Conditions		Min	Тур	Max	Unit	Remarks	
Input leakage current	lı∟	All input pins	$V_{CC} = DV_{CC} = AV_{CC} = 5.5 V$ $V_{SS} < V_1 < V_{CC}$	-5		5	μA	
Input capacitance 1	CIN1	Other than Vcc, Vss, DVcc, DVss, Avcc, Avss, C, P70 to P77, P80 to P87			5	15	pF	
Input capacitance 2	CIN2	P70 to P77, P80 to P87	_	_	15	45	pF	
Pull-up resistance	Rup	RST, MD0, MD1	_	25	50	100	kΩ	
Pull-down resistance	RDOWN	MD2	_	25	50	100	kΩ	
Output H voltage 1	Vон1	Other than P70 to P77, P80 to P87	Vcc = 4.5 V Іон = -4.0 mA	Vcc – 0.5	_	_	V	
Output H voltage 2	Vон2	P70 to P77, P80 to P87	Vcc = 4.5 V Іон = -30.0 mA	Vcc – 0.5			V	
Output L voltage 1	Vol1	Other than P70 to P77, P80 to P87	Vcc = 4.5 V Io∟ = 4.0 mA	_	_	0.4	V	
Output L voltage 2	Vol2	P70 to P77, P80 to P87	$V_{CC} = 4.5 V$ $I_{OL} = 30.0 mA$			0.55	V	
Large current output drive capacity variation 1	ΔVон2	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	Vcc = 4.5 V Іон = 30.0 mA Vон2 maximum variation	0	_	90	mV	*4
Large current output drive capacity variation 2	ΔV ol2	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3	Vcc = 4.5 V Іон = 30.0 mA VoL2 maximum variation	0		90	mV	*4
LCD internal divider resistance	RLCD	V0 to V1, V1 to V2, V2 to V3		50	100	200	kΩ	(Continued)

(Vcc = 5.0 V±10%, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

(Continued)

(Continued)

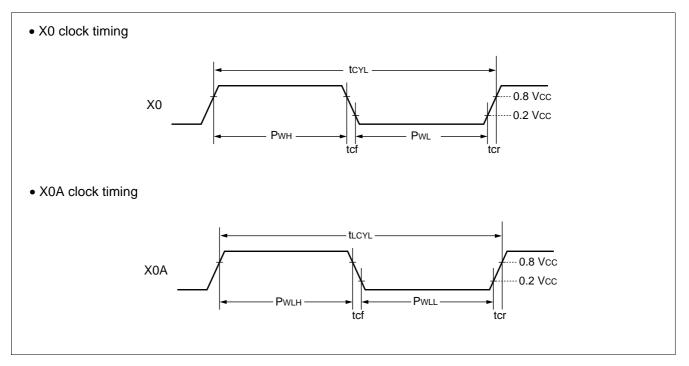
$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{DV}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ I}_{A} = -40 ^{\circ}\text{C} \text{ to} \pm 105 ^{\circ}\text{C}$								
Parameter	Symbol	Pin name	Conditions		Value	Unit	Remarks	
i arameter	Cymbol		Conditions	Min	Тур	Max	Onit	itemarks
COM0 to COM3 output imped- ance	R∨сом	COMn (n = 0 to 3)	_		_	2.5	kΩ	
SEG0 to SEG3 output imped- ance	Rvseg	SEGn (n = 00 to 23)				15	kΩ	
LCD leakage current	ILCDC	V0 to V3 COMm (m = 00 to 23) SEGn (n = 00 to 23)		-5.0		+5.0	μΑ	

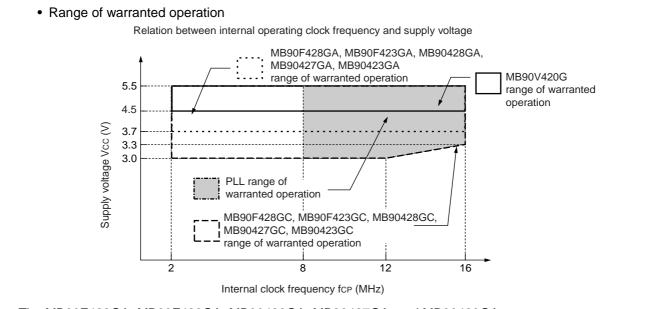
(Vcc = 5.0 V±10%, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

*1 : All input pins except X0, X0A, MD0, MD1, MD2 pins.

*2 : MD0, MD1, MD2 pins.

*3 : Supply current values assume external clock feed from the X1 pin and X1A pin. Users must be aware that supply current levels differ depending on whether an external clock or oscillator is used.

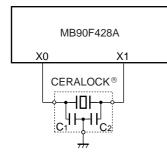

*4 : Defined as maximum variation in VoH2/VoL2 with all channel 0 PWM1P0/PWM1M0/PWM2P0/PWM2M0 simultaneously ON. Similarly for other channels.


4. AC Characteristics

(1) Clock timing

(Vcc = 5.0 V±10%, Vss = DVss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol	Pin name	Condi-		Value		Unit	Remarks
Parameter	Symbol	Pinname	tions	Min	Тур	Max	Unit	Remarks
Base oscillation	Fc	X0, X1		_	4		MHz	
clock frequency	FLC	X0A, X1A			32.768	_	kHz	
Base oscillation	tcyL	X0, X1			250		ns	
clock cycle time	t LCYL	X0A, X1A			30.5		μs	
Input clock pulse width	Pwh, Pwl	X0		10			ns	Use duty ratio of 40 to 60% as a guideline
	PWLH, PWLL	X0A			15.2		μs	
Input clock rise, fall time	tcr, tcf	X0, X0A		_		5	ns	With external clock signal
Input operating clock frequency	Fcp			2		16	MHz	Using main clock, PLL clock
CIOCK ITEQUEIICY	FLCP	—			8.192		kHz	Using sub clock
Input operating	tcp	_		62.5	_	500	ns	Using main clock, PLL clock
clock cycle time	t LCP				122.1		μs	Using sub clock

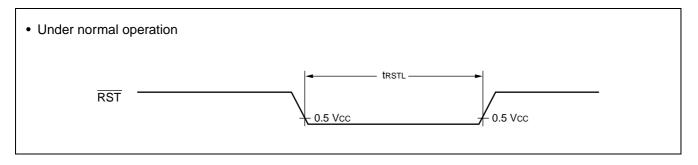

The MB90F428GA, MB90F423GA, MB90428GA, MB90427GA, and MB90423GA enter reset mode at supply voltage below 4 V \pm 0.3 V.

Relation between oscillator clock frequency and internal operating clock frequency

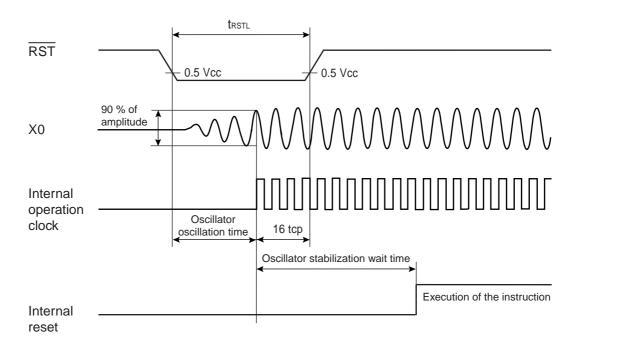
		Internal operating clock frequency						
		PLL clock						
	Main clock	Multiplier × 1	Multiplier × 2	Multiplier × 3	Multiplier × 4			
Oscillation clock frequency	4 MHz	2 MHz		8 MHz	12 MHz	16 MHz		

• Sample oscillator circuit

Oscillator element manufacturer	Oscillator	Frequency	C1	C2	
Murata Manufacturing Co., Ltd.	CSTCR4M00G15() A-R0	4 MHz	39 [pF] (Typ)	39 [pF] (Typ)	

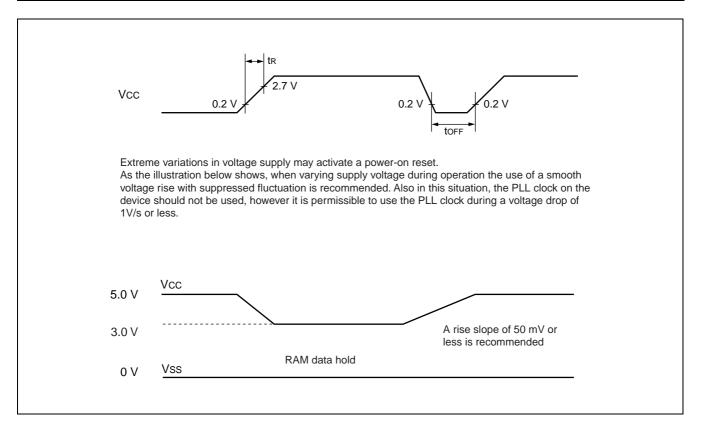

AC ratings are defined for the following measurement reference voltage values: Input signal waveform Output signal waveform Hysteresis input pin 0.8 Vcc 2.4 V 0.5 Vcc 0.8 V

(2) Reset input


$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$										
Parameter	Symbol	Pin name Conditions Value		Value		Domosiko				
Falameter	Symbol	Fininanie	Conditions	Min	Max	Unit	Remarks			
				16 tcp		ns	In normal operation			
Reset input time	t rstl	RST		Oscillator oscillation time* + 16 tcp		ms	In stop mode, sub clock mode, sub sleep mode, watch mode			

*: Oscillator oscillation time is the time to reach 90% amplitude. For a crystal oscillator, this is a few to several hundred ms; for a FAR/ceramic oscillator, this is several hundred ms to a few ms, and for an external clock this is 100 µs.

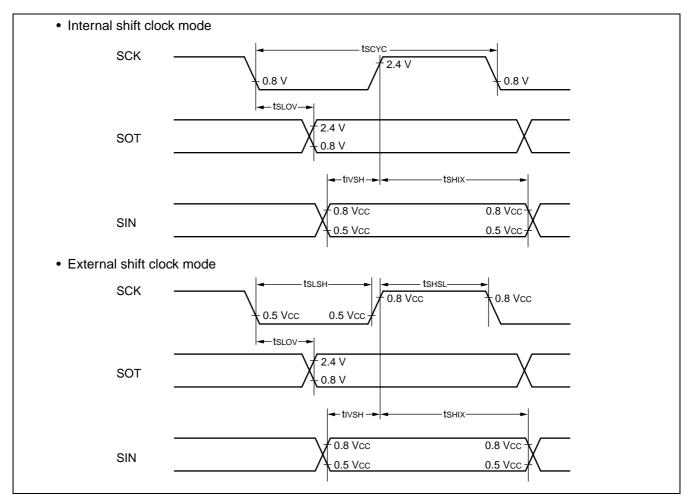
Note : tcp : See " (1) Clock input timing".


• In stop mode, sub clock mode, sub sleep mode, watch mode

(3) Power-on reset, power on conditions

(Vss = 0.0 V, $T_A = -40 \ ^{\circ}C$ to +105 $^{\circ}C$)

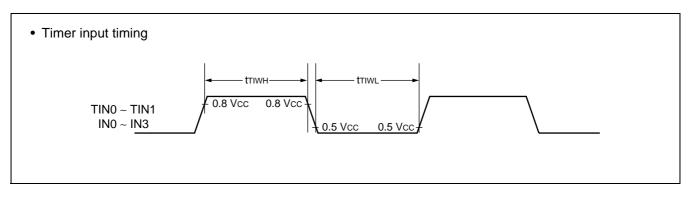
Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Falameter	Symbol	name	Conditions	Min	Max	Unit		
Power supply rise time	tR			0.05	30	ms		
Power supply start voltage	Voff	Vcc	Maa		0.2	V		
Power supply attained voltage	Von	VCC		2.7		V		
Power supply cutoff time	toff			50		ms	For repeat operation	


(4) UART0, UART1 timing

Parameter	Symbol	Pin name	Conditions	Va	Value		Remarks	
Falameter	Symbol		Conditions	Min	Max	Unit	Remarks	
Serial clock cycle time	t scyc	SCK0, SCK1		8 t CP		ns		
SCK fall to SOT delay time	t slov	SCK0, SCK1 SOT0, SOT1		-80	80	ns	Internal shift clock mode output pin C∟ =	
Valid SIN to SCK rise	t ivsh	SCK0, SCK1		100	_	ns	80 pF + 1∙TTL	
SCK rise to valid SIN hold time	t shix	SIN0, SIN1		60	_	ns		
Serial clock "H" pulse width	t shsl			4 t CP		ns	External shift	
Serial clock "L" pulse width	t slsh	SCK0, SCK1		4 t _{CP}		ns		
SCK fall to SOT delay time	t slov	SCK0, SCK1 SOT0, SOT1	_		150	ns	clock mode output pin C∟ =	
Valid SIN to SCK rise	tivsH SCK0, SCK1			60		ns	80 pF + 1∙TTL	
SCK rise to valid SIN hold time	t shix	SIN0, SIN1		60	_	ns		

Notes : • AC ratings are for CLK synchronous mode.

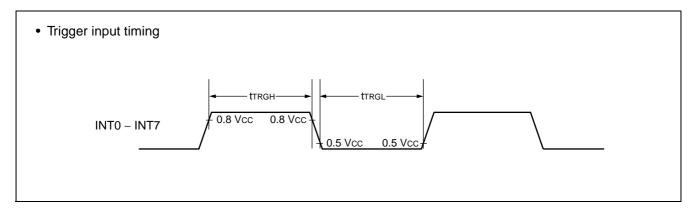
• CL is load capacitance connected to pin during testing.


• t_{CP} : See "(1) Clock timing".

(5) Timer input timing

Parameter	Symbol Pin na	Pin name	ame Conditions	Va	lue	Unit	Remarks
Farameter	Symbol	Finnanie	Conditions	Min	Max	Unit	
Input pulse width	tтıwн tтıw∟	TIN0, TIN1, IN0, IN1, IN2, IN3,	_	4 tcp	_	ns	

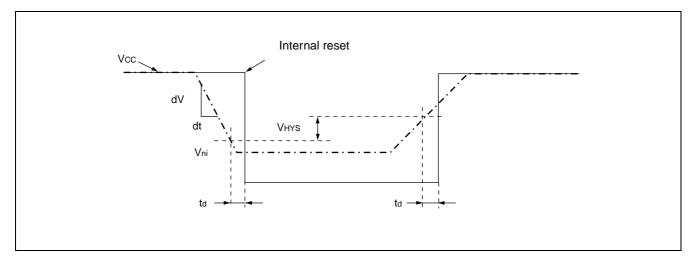
Note : t_{CP} : See " (1) Clock timing".



(6) Trigger input timing

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol Pin name	Conditions -	Value		Unit	Remarks	
Falameter	Farameter Symbol Fin han		Min	Max	Onit	Remarks	
Input pulse width	t _{тrgн} ,	INT0 to INT7		5 tcp		ns	Under normal operation
	t trgl			1		μs	In stop mode



(7) Low voltage detection

$(Vss = AVss = 0.0 V, T_A = -4$	0 °C to +105 °C)
---------------------------------	------------------

Parameter	Symbol P	Pin name	Conditions -		Value	Unit	Remarks	
	Symbol	FIII Haille		Min	Тур	Max	Onic	Remarks
Detection voltage	Vdl	Vcc	—	3.7	4.0	4.3	V	During voltage drop
Hysteresis width	VHYS	Vcc	—	0.1			V	During voltage rise
Power supply voltage fluctuation ratio	dV/dt	Vcc	—	-0.1		0.02	V/µs	
Detection delay time	td					35	μs	

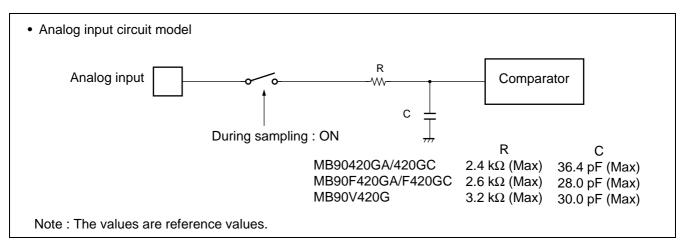
5. A/D Conversion Block

(1) Electrical Characteristics

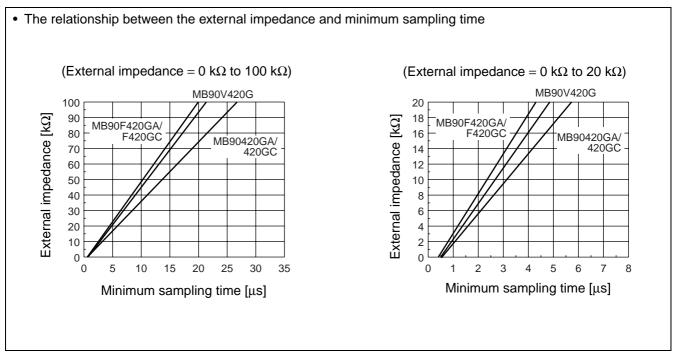
(Vcc = AVcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)

Parameter	Symbol	Pin name		Value	Unit	Remarks		
Parameter	Symbol	Pin name	Min	Min Typ		Unit	Reinarks	
Resolution					10	bit		
Total error					±5.0	LSB		
Non-linear error		—		—	±2.5	LSB		
Differential linear error		—		—	±1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 3.5 LSB	AVss + 0.5 LSB	AVss + 4.5 LSB	V	$1 \text{ LSB} = (A)/(BH = A)/(a_0)$	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH – 6.5 LSB	AVRH – 1.5 LSB	AVRH + 1.5 LSB	V	(AVRH – AVss) / 1024	
Sampling time	t SMP		2.000		_	μs	*1	
Compare time	t CMP		4.125		_	μs	*2	
A/D conversion time	t CNV		6.125		_	μs	*3	
Analog port input current	Iain	AN0 to AN7	_	—	10	μA	$V_{AVSS} = V_{AIN} = V_{AVCC}$	
Analog input current	VAIN	AN0 to AN7	0		AVRH	V		
Reference voltage	AVR+	AVRH	3.0		AVcc	V		
	la	AVcc		2.3	6.0	mA		
Power supply current	Іан	AVCC	_		5	μΑ	*4	
Reference voltage feed	IR	AVRH	50	180	260	μΑ	$V_{\text{AVRH}} = 5.0 \text{ V}$	
current	IRH	AVRH			5	μΑ	*4	
Inter-channel variation		AN0 to AN7			4	LSB		

*1 : At $F_{CP} = 16 \text{ MHz}$, $t_{SMP} = 32 \times t_{CP} = 2.000 \text{ (}\mu\text{s)}$.


*2 : At FCP = 16 MHz, tCMP = $66 \times t$ CP = 4.125 (μ s).

*3 : Equivalent to conversion time per channel at $F_{CP} = 16$ MHz, and selection of $t_{SMP} = 32 \times t_{CP}$ and $t_{CMP} = 32 \times t_{CP}$


*4 : Defined as supply current (when Vcc = AVcc = AVRH = 5.0 V) with A/D converter not operating, and CPU in stop mode.

• Notes of the external impedance of the analog input and its sampling time

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion presicion.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

- If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.
- About errors

As |AVRH| becomes smaller, values of relative errors grow larger.

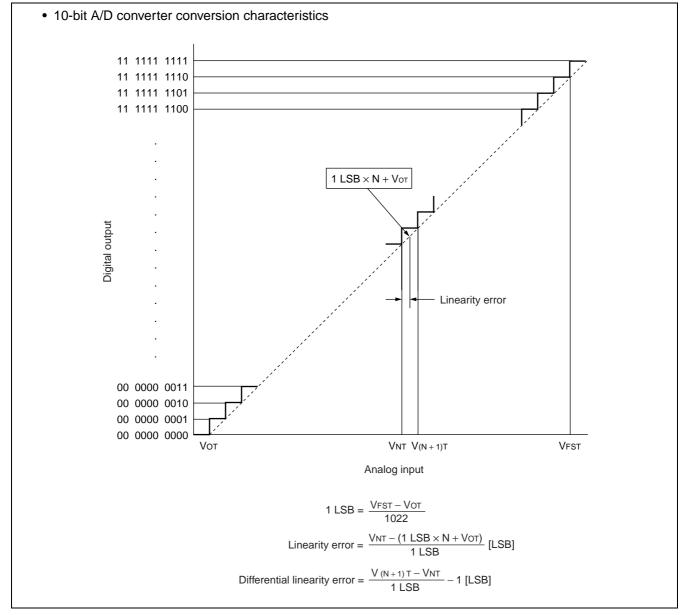
(2) Definition of terms

Resolution

Indicates the ability of the A/D converter to discriminate in analog conversion.

10-bit resolution indicates that analog voltage can be resolved into $2^{10} = 1024$ levels.

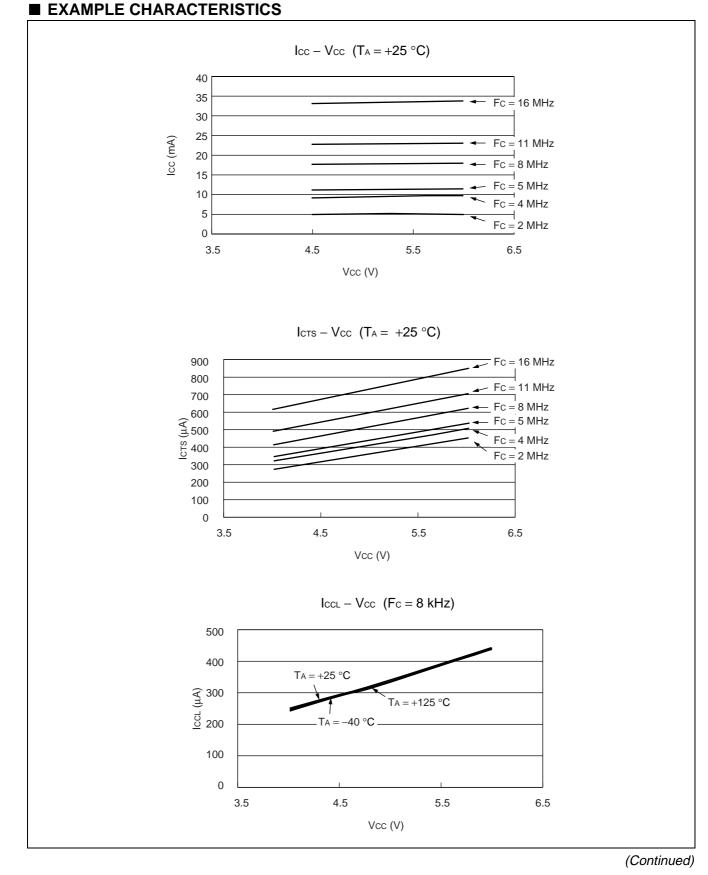
Total error

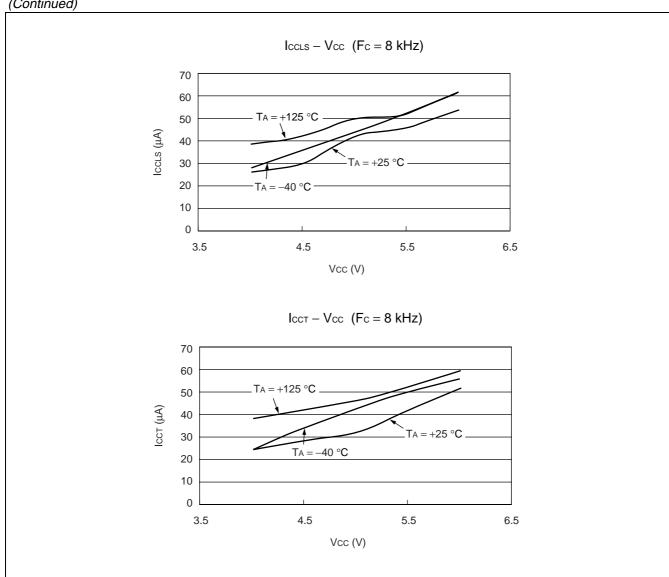

Expresses the difference between actual and logical values. It is the total value of errors that can come from offset error, gain error, non-linearity error and noise.

· Linearity error

Expresses the deviation between actual conversion characteristics and a straight line connecting the device's zero transition point (00 0000 0000 $\leftrightarrow \rightarrow$ 00 0000 0001) and full scale transition point (11 1111 1110 $\leftarrow \rightarrow$ 11 1111 1111).

• Differential linearity error

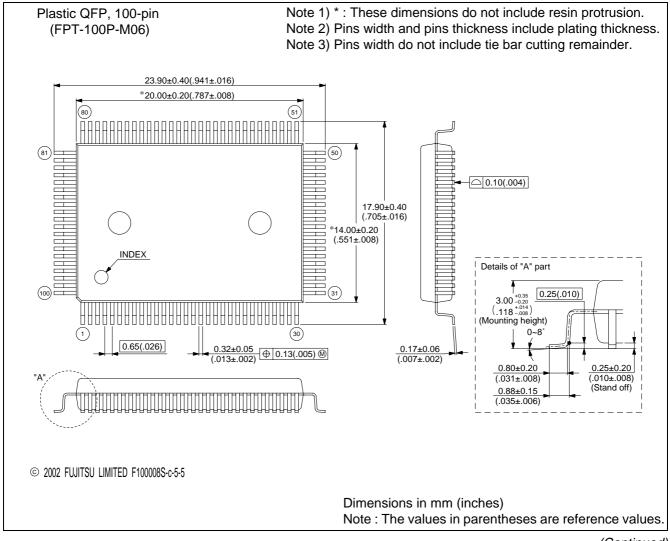

Expresses the deviation of the logical value of input voltage required to create a variation of 1 SLB in output code.



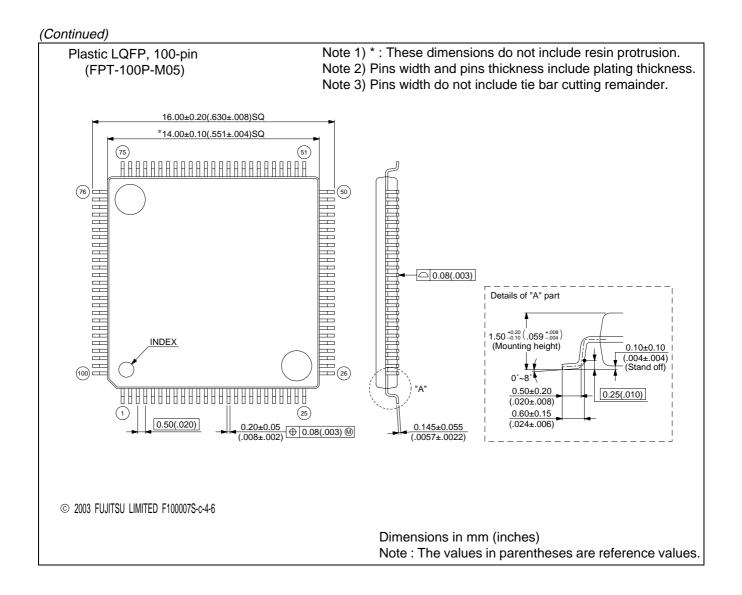
Parameter	Conditions	Value			Unit	Remarks	
Farameter	Conditions	Min	Тур	Max	Unit		
Sector erase time			1	15	S	Excludes 00H programming prior erasure	
Chip erase time	$T_A = + 25 \ ^\circ C$		5		S	Excludes 00H programming prior erasure	
Word (16 bit width) programming time	Vcc = 5.0 V		16	3,600	μs	Excludes system-level overhead	
Erase/Program cycle		10,000	_		cycle		
Flash data retention time	Average T _A = + 85 °C	10		_	year	*	

6. Flash Memory Program and Erase Performances

* : This value comes from the technology qualification. (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C)



(Continued)


■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F423GAPF MB90F423GCPF MB90F428GAPF MB90F428GCPF MB90423GAPF MB90423GCPF MB90427GAPF MB90427GCPF MB90428GAPF MB90428GCPF	Plastic QFP, 100-pin (FPT-100P-M06)	
MB90F423GAPFV MB90F423GCPFV MB90F428GAPFV MB90F428GCPFV MB90423GAPFV MB90423GCPFV MB90427GAPFV MB90427GCPFV MB90428GAPFV MB90428GCPFV	Plastic LQFP, 100-pin (FPT-100P-M05)	

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0410 © 2004 FUJITSU LIMITED Printed in Japan